
CGC Software Manual BI-0501
CAN Gateway Controller

Version 2.1 January 1998

Documentation History

Date Version Change/Description

97/07/10 0.1 Preliminary Specification

97/09/19 1.0 First Release

97/12/15 2.0 Protocol Changes

98/01/05 2.1 Minor Clarifications

Copyright

Copyright © 1997 by Brand Innovators of Digital Products bv. All rights reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of Brand
Innovators of Digital Products bv, Post Office Box 1377, 5602 BJ Eindhoven - The Netherlands.

Disclaimer

The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Brand Innovators of Digital Products bv makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchant ability or fitness for any particular purpose.
Furthermore, Brand Innovators of Digital Products bv reserves the right to make changes to any product herein to improve
reliability, function or design, without obligation of Brand Innovators of Digital Products bv to notify any person of such revision or
changes. Brand Innovators of Digital Products bv does not assume any liability arising out of applications or use of any product
or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

Table of Contents
Chapter 1 Introduction. 1-1

1.1 Purpose . 1-1
1.2 Audience . 1-1
1.3 Conventions . 1-1
1.4 Overview . 1-1

Chapter 2 CAN Gateway Controller . 2-1

2.1 Introduction. 2-1
2.2 Overview . 2-1
2.3 Setup . 2-2
2.4 Usage. 2-3
2.5 Security . 2-4

Chapter 3 Protocol Description . 3-1

3.1 Introduction. 3-1
3.2 Connection Management . 3-1
3.3 Packet Format . 3-2
3.4 Field Types . 3-2
3.5 Request Types . 3-4
3.6 Privileges . 3-4
3.7 Error Codes . 3-5

3.7.1 ERROR: Malformed packet detected 3-5
3.8 Power-down Handling. 3-6
3.9 User Management . 3-7

3.9.1 USER-LOGIN: Login a user to the CGC 3-7
3.9.2 USER-LOGOUT: Logout a user to the CGC 3-8
3.9.3 USER-STATUS: Request a list of logged in users. 3-8

3.10 Control Packets . 3-9
3.10.1 SYS-NOP: No operation (a.k.a. ping) 3-9
3.10.2 SYS-RESET: Reset the CGC to initial state 3-9
3.10.3 SYS-INFO: Request information about the CGC 3-10
3.10.4 SYS-CONFIGURE: Change system configuration 3-12
3.10.5 SYS-SERIAL: Configure the RS-232 port 3-13

3.11 CAN Port Packets. 3-13
3.11.1 PORT-ADD: Allocate one or more CAN ports to a user . . . 3-14
3.11.2 PORT-DELETE: Remove one or more ports from a user . . 3-14
CGC Software Manual iii Brand Innovators

Table of Contents (continued) BI-0501
3.11.3 PORT-STATUS: Report CAN port allocation status 3-15
3.11.4 PORT-GETSPEED: Get CAN port bit rate 3-15
3.11.5 PORT-SETSPEED: Set CAN port bit rate 3-16
3.11.6 PORT-STATISTICS: Get CAN port statistics 3-16

3.12 Watchdog Packets. 3-17
3.12.1 WATCHDOG-ADD: Add watchdog message to a port 3-18
3.12.2 WATCHDOG-DELETE: Remove watchdog from a port 3-18
3.12.3 WATCHDOG-STATUS: Show watchdog status on a port. . . 3-19

3.13 Filter Packets. 3-19
3.13.1 FILTER-ADD: Add CAN message filter to ports. 3-20
3.13.2 FILTER-DELETE: Remove CAN message filter from ports . 3-20
3.13.3 FILTER-STATUS: Report CAN message filter for ports 3-21

3.14 CAN Packets . 3-21
3.14.1 CAN-SEND: Send CAN messages to a port 3-22
3.14.2 CAN-RECEIVE: Received CAN messages 3-22
3.14.3 CAN-ERROR: CAN message errors 3-22

Chapter 4 CGC Host Library .4-1

4.1 Introduction . 4-1
4.2 Prerequisites . 4-1
4.3 Connection Management . 4-2

4.3.1 cgc_init() . 4-3
4.3.2 cgc_deinit() . 4-3
4.3.3 cgc_conn_cmdch(). 4-4
4.3.4 cgc_conn_datach() . 4-5
4.3.5 cgc_conn_pwrch() . 4-5
4.3.6 cgc_disconnect() . 4-6
4.3.7 cgc_doio() . 4-6

4.4 User Management . 4-7
4.4.1 cgc_u_login() . 4-7
4.4.2 cgc_u_logout() . 4-8
4.4.3 cgc_u_status() . 4-9

4.5 CGC Server Configuration . 4-9
4.5.1 cgc_s_nop() . 4-10
4.5.2 cgc_s_reset() . 4-10
4.5.3 cgc_s_info() . 4-11
4.5.4 cgc_s_config() . 4-12
4.5.5 cgc_s_serial(). 4-13
4.5.6 cgc_s_pwrnotify(). 4-13

4.6 CAN Port Management. 4-15
4.6.1 cgc_p_add() . 4-15
Brand Innovators iv CGC Software Manual

BI-0501 Table of Contents (continued)
4.6.2 cgc_p_delete(). 4-16
4.6.3 cgc_p_status(). 4-16
4.6.4 cgc_p_getspeed() . 4-17
4.6.5 cgc_p_setspeed() . 4-17
4.6.6 cgc_p_statistics(). 4-18

4.7 Watchdog Management . 4-19
4.7.1 cgc_w_add() . 4-19
4.7.2 cgc_w_delete() . 4-19
4.7.3 cgc_w_status() . 4-20

4.8 Filter Management . 4-21
4.8.1 cgc_f_add() . 4-21
4.8.2 cgc_f_delete() . 4-22
4.8.3 cgc_f_status() . 4-22

4.9 CAN Message Reception and Transmission 4-23
4.9.1 cgc_c_canio() . 4-23
CGC Software Manual v Brand Innovators

Table of Contents (continued) BI-0501
Brand Innovators vi CGC Software Manual

List of Figures
Figure 2-1 BI-0501/CGC Network Configuration . 2-1
CGC Software Manual vii Brand Innovators

List of Figures (continued) BI-0501
Brand Innovators viii CGC Software Manual

Chapter 1 Introduction

1.1 Purpose

This manual describes the usage and technical specification of the CAN Gateway Controller protocol
(abbreviated CGC). Both the setup and basic usage procedures as well as a specification of the proto-
col is described in this manual. To ease the application of the CGC protocol on a host, a special library
is provided which hides most of the details of the protocol.

The CAN Gateway Controller protocol allows users connected to a BI-0501 through a TCP/IP style net-
work to communicate with devices connected to any of the BI-0501’s CAN ports. It is a simple request/
response type protocol which maintains very little state between requests. Although the CGC server for
example does require a user to login before giving access to CAN ports, it is not possible to have multi-
ple outstanding requests which need to be replied to in a particular order. With the CGC protocol users
can run CAN based applications on a host computer which communicate with devices connected to any
of the CAN ports on a BI-0501.

1.2 Audience

This manual is mainly intended for those who are involved with the installation and use of the BI-0501
CGC server.

1.3 Conventions

To distinguish between various types of information this manual uses a few typographical conventions:

Helvetica: The Helvetica font is used for normal body text;
Courier : The courier font is used to denote literal values as in:

‘the value of the error code will be b’

Meta-syntactic items such as fields in packets are denoted by enclosing them in < and > brackets.

1.4 Overview

Chapter 1 Introduction
This chapter.

Chapter 2 CAN Gateway Controller
An overview of the CAN Gateway Controller function and usage is given in this chapter. It
gives an overview of the CGC protocol and describes the basic installation steps required
CGC Software Manual Page 1-1 Brand Innovators

Introduction BI-0501
to install the CGC in a TCP/IP based network. The chapter concludes with a walk through
of the usage of both the CGC protocol and the host library.

Chapter 3 CAN Gateway Controller Protocol
This chapter gives the specification of the CAN Gateway Controller protocol as it appears
“on the wire”.

Chapter 4 CGC Host Library
To ease the implementation of the CAN Gateway Controller protocol on the host side a
library is available which does most of the packet building and parsing. This removes the
need for an application programmer to know the details of each packet flowing between
the host and the BI-0501.
Brand Innovators Page 1-2 CGC Software Manual

Chapter 2 CAN Gateway
Controller

2.1 Introduction

In this chapter an overview of the CAN Gateway Controller protocol is given, followed by the installation
procedure of a BI-0501 equipped with the CGC protocol.

2.2 Overview

The CAN Gateway Controller is both a protocol definition and an standard application on the BI-0501. The
protocol describes the sequence and format of messages between a user’s host (the client) and the CGC
application (or CGC server) on the BI-0501. The protocol operates on top of TCP/IP (specifically TCP)
allowing hosts (the clients) to send and receive CAN style messages to and from devices connected to
any of the BI-0501’s CAN ports.

Figure 2-1 BI-0501/CGC Network Configuration

Two TCP connections are maintained by the CGC protocol: one for the command protocol and one for
relaying CAN messages between the BI-0501 and the user’s host application. The command protocol is a
simple request/response protocol. The user sends a single command to the CGC server on the BI-0501

BI-0501/CGC

TCP/IP

Internet
or

LAN

TCP/IP

CAN bus
#1

CAN bus
#8

Windows 95/NT, UNIX

Host
#1

Host
#n

Host
#n

TCP/IP

CAN Devices
CGC Software Manual Page 2-1 Brand Innovators

CAN Gateway Controller BI-0501
which is executed by the CGC server and replied on. It is never possible to have multiple outstanding
requests and responses are never sent out of order or delayed. CAN messages are relayed on a sepa-
rate TCP connection between the BI-0501 and the host application. This separate TCP connection is
initiated by the CGC server after executing the USER-LOGIN command. As part of the response, the
CGC server sends back a port number to which the user’s host application can connect in order to send
and receive CAN messages. Before it is possible to send and receive CAN messages over this sepa-
rate connection it is necessary for the host application to allocate CAN ports on the BI-0501.

The CGC protocol supports multiple users. Before access is granted to one or more CAN ports, a user
must request allocation of those ports. This allows users to access a mix of CAN ports on the BI-0501
and also prevents users interfering with each other.

2.3 Setup

Very little is required to setup the BI-0501 with the CGC server. The CGC server is contained in Flash
memory and will start-up when power is applied to the BI-0501. It will then listen to connection requests
from either it's Ethernet port or serial port. The serial port uses the SLIP protocol.

The factory default IP address for the BI-0501's Ethernet port is 10.0.0.1 and that for the serial port is
10.0.0.2. These addresses are stored in nonvolatile memory and at initial power-up the CGC server will
listen for connection requests to these addresses. The addresses should probably be changed to
match the network addresses where the BI-0501 is installed. The new addresses can be configured
using the SYS-CONFIG packet which also changes the addresses in nonvolatile memory.

To do so one should login to the CGC server using the USER-LOGIN packet (or the cgc_u_login()
function in the CGC Host library) with name ‘root’ (see below) and subsequently issue a SYS-CONFIG
command. The CGC server will then store the new IP addresses in nonvolatile memory and reset itself.
After the CGC server has reset itself it will listen to connection requests using the newly configured IP
addresses.

The TCP port on which the CGC server on the BI-0501 listens for connection requests is 28001. This
cannot be changed.

The default settings for the serial port are: 9600bps, 8 data bits, no parity, 1 stop bit.

For certain operations on the BI-0501 special privileges are needed. These operations include chang-
ing the IP addresses for the Ethernet and serial ports and forcibly resetting the CGC server. To gain
these privileges one must be logged in under a certain name. The factory default name is `root' and is
stored in nonvolatile memory, but can be changed with the SYS-CONFIG packet in the same manner
as described above for changing the BI-0501’s IP addresses. The new name is written to nonvolatile
memory and will take effect after the next reset of the CGC server.
Brand Innovators Page 2-2 CGC Software Manual

BI-0501 CAN Gateway Controller
The default bit rate on a CAN port on the BI-0501 after allocation is 125kbps. The bit rate can be
changed with the PORT-SETSPEED request. The following bit rates can be selected:

Note that the bus length are recommended maxima. For bus lengths greater than 1000m it may be nec-
essary to employ repeater devices.

2.4 Usage

To use the CGC server one can either hand craft packets and send them as described in chapter 3 or
use the CGC host library functions described in the chapter 4.

The protocol is mostly stateless meaning that the transmission of a packet does not depend on a partic-
ular state of the CGC server. However, for certain types of packets to perform a useful function it is nec-
essary that certain other packets have been sent previously. For example: before a port can be
allocated by a user, the user must have logged in using the USER-LOGIN packet.

The normal sequence of events when using a CAN port on the BI-0501 is:

• login with the USER-LOGIN packet;

• connect to the port number on the BI-0501 mentioned

in the response to the USER-LOGIN packet;

• allocate one or more ports with the PORT-ADD packet;

• possibly configure watchdog messages and filters with

the WATCHDOG-ADD and FILTER-ADD packets;

• send and receive CAN messages;

• logout with the USER-LOGOUT packet when done.

Control packets can be sent regardless if the sender is logged in with the CGC server. They are always
responded to unless the sender does not have sufficient privileges.

Table 2-1 CAN bus bit rate and bus length

Bit Rate (bps) Bus Length (m)

1M 25

800k 50

500k 100

250k 250

125k 500

50k 1000

20k 2500

10k 5000
CGC Software Manual Page 2-3 Brand Innovators

CAN Gateway Controller BI-0501
2.5 Security

The CGC server uses a cooperative security model. Before given access to CAN ports on the BI-0501
users must register themselves with the CGC server. To change certain essential parameters on the
CGC server one must be registered with the CGC server as the so called `root' user. This name can be
changed on the CGC server to avoid others from inadvertently changing those parameters.

There are many different types of security measures that could be taken to protect the CGC server and
the BI-0501 from malicious tampering in a production environment. The exact nature of those measures
depend strongly on the facilities available on the (LAN) network to which the BI-0501 is connected.
Advanced security measures could include such things as firewalls, packet encryption and strong
authentication techniques.
Brand Innovators Page 2-4 CGC Software Manual

Chapter 3 Protocol Description

3.1 Introduction

In this chapter the CAN Gateway Controller protocol is described in detail. The CGC protocol allows
one or more host computers (typically workstations) to interact with any of the CAN channels on the
BI-0501.

3.2 Connection Management

The CGC server on the BI0501 uses up to three TCP/IP connections with the user’s host application:
one is used for the command/response protocol, one is used for exchanging CAN messages and one is
used to notify the user’s host application in the event of a power failure on the BI-0501. The first two
connections are TCP connections, while the latter is a UDP connection.

The CGC server listens on TCP port 28001 for connection requests. When the user’s host application
connects to this port an initial TCP connection for the command/response protocol is created. This con-
nection is also called the “command connection”.

The user’s host application can then send commands to the CGC server which are executed and
replied to. To send and receive CAN messages however, the user’s host application must log in with the
CGC server, using the USER-LOGIN packet. A side effect of this USER-LOGIN packet is that the CGC
server allocates a second TCP port on which it will listen for a connection request from the user’s host
application.

This second TCP port is used for relaying CAN messages between the CGC server and the user’s host
application. The TCP port number for this second connection is sent to the user’s host application as
part of the reply to the USER-LOGIN packet. After the user’s host application connects to this second
port, no CAN messages will be sent by the CGC server until CAN ports are actually allocated using the
PORT-ADD request. This second TCP connection for relaying CAN messages is also called the “data
connection”.

When the user’s host application sends a USER-LOGOUT packet the CGC server closes the data con-
nection, but not the command connection. If the user’s host application closes the command connec-
tion, the CGC server performs all internal actions associated with the USER-LOGOUT, which includes
closing its end of the command connection and the data connection.

The third connection between the user’s host application and the CGC server is used to notify the
user’s host application of unexpected power failures of the BI-0501. This connection uses the UDP pro-
tocol and does not need to exist permanently (UDP is a so called connectionless protocol). The user’s
host application notifies the CGC server of a UDP port on the host on which it wants to receive a power
failure notification with the SYS-POWERDOWN packet.
CGC Software Manual Page 3-1 Brand Innovators

Protocol Description BI-0501
3.3 Packet Format

Packets are basically encoded in a fixed field format, i.e. in a packet of a particular type the same field
is always located at the same position in the packet. The first two fields in every packet are a Type field
and a Code field. These two indicate the type (request or response) and the operation code of the
packet. Below is a representation of a packet:

The Type field indicates whether the packet is a request to perform an operation or a response to a
previous request. There are three types of packets:

• request Request packets initiate an action by the receiver;

• solicited Response packets that are sent (as the name implies) in response to request packets;

• unsolicited Unsolicited response packets are sent without a previous request.

The difference between the first two types is that request packets must be answered with a solicited
response packet. Request packets may be sent by either a host or by the CGC. Request packets can
also be interpreted as commands, while solicited response packets give the result of command execu-
tion. Currently the CGC does not send request packets.

Unsolicited response packets are sent without a previous explicit request. They can be sent when an
event happens or a state changes on either the host or the CGC. Currently unsolicited response pack-
ets are sent by the host when it wants the CGC to transmit one or more CAN messages and by the
CGC when it receives messages from the CAN ports on the BI-0501.

The Code field indicates the specific request or response depending whether the Type field indicates a
request or response packet.

The Data field is of variable length and depends on the Code and Length field.

The basic unit of packets is a byte. The Length field defines the total number of bytes specified in the
packet. The Length field itself is 4 bytes long and defined as an unsigned integer in network byte
order. The Type and Code fields are each one byte long from which follows that the minimum packet
length is six bytes. In the packet descriptions in chapter 3 the Length field is mentioned but not further
described as it has the same format and function for each packet.

3.4 Field Types

As mentioned in the previous paragraph, packets use a fixed position for fields. This means that the
position of a field in a packet defines its type as opposed to tag based field encoding schemes. In this
paragraph the definition of the various field types and their encoding used in the packet descriptions in
the following paragraphs.

Three basic data types are used:

u_char an unsigned 8 bit integer;
u_short an unsigned 16 bit integer;
u_long an unsigned 32 bit integer.

Type Code DataLength
Brand Innovators Page 3-2 CGC Software Manual

BI-0501 Protocol Description
For the u_short and u_long types the bytes within a value are encoded in so called network byte
order. This means that the least significant byte is at the highest index position if the value is viewed as
a sequence of u_char values.

Most systems implementing TCP/IP have special functions or macros to convert values of u_short or
u_long type to and from their native format. They are usually known under the names htonl()
(which stands for host to network long), htons() , ntohl() and ntohs() . The htonl() and
ntohl() convert u_long values from and to host byte order and htons() and ntohs() convert
u_short values.

When an sequence of values is contained in a field, an array notation is used:

u_char[8]

means a sequence of 8 unsigned integers (usually characters).

Strings are written as an array of u_char values. All strings have a maximum length and strings shorter
that the maximum array length should be padded with NULL characters (i.e. \0).

Fields within a packet are written using angle-brackets (< and >) as delimiters, as in:

<port> <errcode>

meaning that the field named port is followed by a field name errcode. Note that the whitespace
between the <port> and <errcode> fields is for typographical reasons only. Within a packet fields are
packed.

In packet descriptions such as:

R N <length> <timestamp0>

the letters R and N are the Type and Code field and are in ASCII code. In fact all letters are written as
literal ASCII characters. The <length> field is defined as an u_long size field which holds the length
of the complete packet including the Type and Code fields and the <length> field itself. Therefore the
<length> field should at least have the value 6.

Not all packets have a fixed number of fields, sometimes a list of items may be given in a request or
returned in a response. When a packet has a variable number of fields, the notation:

<nrofitems> { <item> }

is used. The <nrofitems> field is the count of the number of <item> fields that follow. The braces ({
and }) means that zero or more <item> fields may follow the <nrofitems> field. Note that the field
<nrofitems> may have a value of zero, in which case no <item> fields follow it.

A CAN message is encoded as u_char[20] in the packet descriptions. The actual layout is:

u_long <timestamp>
u_long <ident>
u_short <reserved>
u_char <rtr>
u_char <dlc>
u_char[8] <data>
CGC Software Manual Page 3-3 Brand Innovators

Protocol Description BI-0501
The <timestamp> field is the time when the message was received on a CAN port by the BI-0501
counted in microseconds since the CGC server was started. For CAN messages to be sent by the
BI-0501 the <timestamp> field is ignored. The <ident> field is the identifier of the CAN message.
The <rtr> field indicates if the RTR bit is set in the message. It has a non-zero value in that case. The
<dlc> field is the CAN data length code and finally the <data> field contains the data of the CAN mes-
sage.

No checking is done on CAN message to be sent on a CAN port, the <dlc> field is assumed to have a
value between 0 and 8 for example . It is the responsibility of the user’s application that syntactically
correct CAN messages are generated.

3.5 Request Types

This paragraph lists each request packet with its associated request code. It is intended for reference
purposes only. Requests are indicated with a printable ASCII letter.

A PORT-ADD
B PORT-SETSPEED
C CAN-SEND
D PORT-DELETE
E CAN-ERROR
F FILTER-STATUS
H WATCHDOG-ADD
I FILTER-ADD
J SYS-CONFIGURE
K SYS-SERIAL
L USER-LOGIN
M PORT-GETSPEED
N SYS-NOP
O USER-LOGOUT
P PORT-STATUS
Q FILTER-DELETE
R SYS-RESET
S PORT-STATISTICS
U USER-STATUS
V SYS-INFO
W WATCHDOG-STATUS
X WATCHDOG-DELETE
Y CAN-RECEIVE
Z SYS-ERROR
! SYS-POWERDOWN

3.6 Privileges

For certain operations the user needs special privileges, the so called root privileges. The factory
default configuration assigns these privileges to the user who logs in with the name ‘root’. The
SYS-CONFIG packet can be used to change this name. In the packet descriptions however it is
assumed that the name has not been changed from the factory default ‘root’. If the name has been
changed then the correct name should be read instead.
Brand Innovators Page 3-4 CGC Software Manual

BI-0501 Protocol Description
3.7 Error Codes

When a request results in an error, an error code is returned. An error code is a single printable ASCII
character with no further special meaning. The following error codes are defined:

a No error; operation completed successfully.

b Malformed packet.
c Not owner; attempt to perform an operation for which the user

does not have sufficient privileges.

d No such user; user is not known to the CGC.
e User list is full.
f User already logged in.

g No such port; requested CAN port does not exist.
h Port never allocated; request for an operation on a CAN port

that was never allocated by the user.

j No such watchdog message; requested watchdog message
does not exist.

k Invalid watchdog condition.
l Too many watchdog messages; watchdog message list is full.

m No such filter; requested filter message does not exist.
n Invalid filter condition.
o Too many filters; filter list is full.

p CAN controller overflow.
r CAN controller is in bus-off state.

3.7.1 ERROR: Malformed packet detected

Request
N/A

Response
S Z <length> <errcode> { <packetcontents> }

Fields
u_long <length>
u_char <errcode>
u_char[32] <packetcontents>

Description
If a packet is received which cannot be interpreted an ERROR packet is returned. This error
packet always has the <errcode> field to b and copies the first 32 bytes from the original
packet into the <packetcontents> field. If the original packet is less than 32 bytes long
then the remaining locations in <packetcontents> are filled with hexadecimal 0.
CGC Software Manual Page 3-5 Brand Innovators

Protocol Description BI-0501
3.8 Power-down Handling

When the BI-0501 experiences a power failure it notifies the CGC server which in turn attempts to notify
the currently connected users. This notification is done by sending a special message using the UDP
protocol. Simultaneously the CGC server will send a single predefined CAN message out over the CAN
ports allocated to the user.

The UDP port to which the power down notification is sent must have been previously registered with
the CGC server. Likewise the CAN messages to be sent on the CAN ports allocated to user must have
been defined previously. There are no defaults.

The name of this packet is: SYS-POWERDOWN.

Request
R ! <length> <udpport> <nrofports> { <port> <message> }

Response
S ! <length> <err0> <nrofports> { <port> <err1> }
U ! <length> <code>

Fields
u_long <length>
u_short <udpport>
u_long <nrofports>
u_long <port>
u_char[20] <message>
u_char <err0>
u_char <err1>
u_long <code>

Description
The SYS-POWERDOWN command defines the UDP port number on the user's host to
which a power down message should be sent in case the CGC server detects an unexpected
power failure.

The <udpport> is the port number (in network byte order) to which the power down mes-
sage should be sent. Only ports in the range 1024 to 65535 are accepted, UDP port numbers
outside this range are rejected with an error notification. If the UDP port number is rejected
because of a range error, no CAN messages will be registered.

The <nrofports> field defines the number of ports for which to set the power down CAN
message. It is followed by a (possibly empty) list of CAN ports on which to set the message.
The <port> field defines the CAN port and the <message> defines the CAN message.

In the response packet the <err0> field indicates if the UDP port number was accepted or
not. If it was accepted the <err0> field will be set to a. It is followed by the same
<nrofports> field from the request packet and enumerates for each port if the CAN mes-
sage has been accepted or not.

When a power failure is detected by the CGC server it sends a unsolicited power failure mes-
sage to the previously mentioned UDP port. The <code> field is an unsigned long integer in
network byte order and will have the value 1.
Brand Innovators Page 3-6 CGC Software Manual

BI-0501 Protocol Description
3.9 User Management

Before any of the CAN ports available through the CGC can be used, a user must identify him or herself
with the CGC. This is done with a USER-LOGIN packet. After login the user can allocate any number of
CAN ports and send and receive messages through them. When the user is done, sending the USER-
LOGOUT packet will automatically release all CGC resources allocated to that user. No user can login
more than once. Any user can request a list of users through the USER-STATUS command.

A user is identified by a name and this name must be unique within the CGC although it does not have
a predefined list of possible user names. One user name is special however: the name ‘root’. A user
who is logged in with this name has special privileges in that the ‘root’ user can forcibly log out any
other user. The user ‘root’ can also remove CAN ports allocated to other users to make them available
to other users.

User names are at most eight characters long and may contain any printable ASCII character.

3.9.1 USER-LOGIN: Login a user to the CGC

Request
R L <length> <user>

Response
S L <length> <errcode> <dataport>

Fields
u_long <length>
u_char[8] <user>
u_char <errcode>
u_short <dataport>

Description
The USER-LOGIN command registers a user with the CGC. A user cannot login more than
one time. A user with the name ‘root’ is special in that it is the only user allowed to issue the
SYS-RESET command.

The returned <dataport> field (in network byte order) is the number of a TCP port on which
the CGC listens for connection requests. After connecting to this port the CGC will send CAN
messages it received on CAN ports allocated by the user’s host application. CAN messages
that should be transmitted by the CGC on one of the BI-0501’s CAN ports, should be sent to
this TCP port. In effect two TCP connections are maintained by the CGC for each logged in
user: a command channel which is used for all command related activity and a data channel
which is used to relay CAN messages between the user’s host and the CGC.

The CGC will not send CAN messages as long as the user’s host application does not con-
nect to the <dataport> , regardless if CAN ports on the BI-0501 were allocated by the
user’s host application or not.

After initial login no resources such as ports, filters and the like are allocated to the user.
These should be allocated using the appropriate commands. The USER-LOGIN command
may fail if the user is already logged in or if the maximum number of users is exceeded. If the
data port cannot be allocated by the CGC the <dataport> field will have the value 0.
CGC Software Manual Page 3-7 Brand Innovators

Protocol Description BI-0501
3.9.2 USER-LOGOUT: Logout a user to the CGC

Request
R O <length> <user>

Response
S O <length> <errcode>

Fields
u_long <length>
u_char[8] <user>
u_char <errcode>

Description
The USER-LOGOUT command removes the user from the CGC. All resources allocated to
the user are deallocated and made available for allocation by other users. The <user> field
is either empty (i.e. filled with eight NULLs) or the name of a user to logout. If the <user>
field is empty then the user who is requesting the logout is logged out. Only the user logged
in as ‘root’ may logout other users.

A side effect of the USER-LOGOUT command is the closing of the data connection between
the user’s host application and the CGC if one was allocated.

3.9.3 USER-STATUS: Request a list of logged in users

Request
R U <length>

Response
S U <length> <nrofusers> { <user> <ipaddress> <port> <protocol> }

Fields
u_long <length>
u_long <nrofusers>
u_char[8] <user>
u_long <ipaddress>
u_short <port>
u_long <protocol>

Description
The USER-STATUS command requests a list of logged in users. The <nrofusers> field
indicates how many users are logged in. It is followed by a (possibly empty) list of users,
where the <user> field indicates the user who is logged in, the <ipaddress> field is the IP
address of the host from which the user is logged in, the <port> field is the port on the host
from which the user is logged in and the <protocol> field names the protocol used to com-
municate with that user. The <protocol> number is the number of the Internet protocol
according to the most recent Internet ‘Assigned Numbers’ RFC. Currently the TCP protocol is
6 and the UDP protocol is 17.
Brand Innovators Page 3-8 CGC Software Manual

BI-0501 Protocol Description
3.10 Control Packets

Several control packet are available to test and control the CGC as a whole. With the SYS-NOP packet
one can test if the CGC is up and what the round trip time is, the SYS-RESET command restarts the
CGC, deallocating all allocated resources. The SYS-INFO and SYS-CONFIGURE can be used to
query basic BI-0501 configuration and configure some parameters.

3.10.1 SYS-NOP: No operation (a.k.a. ping)

Request
R N <length> <timestamp0>

Response
S N <length> <timestamp0> <timestamp1>

Fields
u_long <length>
u_long <timestamp0>
u_long <timestamp1>

Description
The SYS-NOP command can be used to ascertain the correct operation of the CGC. The
<timestamp0> field is a long word field in unspecified byte order of unspecified contents.
Commonly one would put the current date and time in seconds since some base date
(epoch).

The response packet places this timestamp unchanged in the first long word field. The
<timestamp1> field is also a long word field containing the current time as known by the
CGC in network byte order. This time value is the number of seconds elapsed since January
1st 1988.

3.10.2 SYS-RESET: Reset the CGC to initial state

Request
R R <length>

Response
S R <length> <errcode>

Fields
u_long <length>
u_char <errcode>

Description
The SYS-RESET command resets the CGC to its initial state and undoes all effects from
commands such as USER-LOGIN, PORT-ADD, PORT-SETPHYS, WATCHDOG-ADD and
FILTER-ADD. It will effectively restart the CGC server.

The SYS-RESET command can only be executed by a user currently logged in into the CGC
with the name ‘root’. Note that as an effect of the SYS-RESET command the user ‘root’ will
be logged out.
CGC Software Manual Page 3-9 Brand Innovators

Protocol Description BI-0501
3.10.3 SYS-INFO: Request information about the CGC

Request
R V <length>

Response
S V <length> <timestamp> <cgcversion> <serialnr> <prodname>
<os> <cpuid> <temp> <eaddr> <e-ipaddr> <s-ipaddr>
<nrofmemblocks> { <memtype> <baseaddr> <length> }
<nrofcancntl> { <controller> <fifodepth> }

Fields
u_long <length>
u_long <timestamp>
u_char[32] <cgcversion>
u_char[8] <serialnr>
u_char[32] <prodname>
u_char[32] <os>
u_long <cpuid>
u_long <temp>
u_char[6] <eaddr>
u_long <e-ipaddr>
u_long <s-ipaddr>
u_long <nrofmemblocks>
u_long <memtype>
u_long <baseaddr>
u_long <length>
u_long <nrofcancntl>
u_long <controller>
u_long <fifodepth>

Description
The SYS-INFO command requests a configuration report from the BI-0501. The configura-
tion report includes the CGC software version, information about the system hardware and
software and the memory and CAN controllers on the BI-0501. For purposes of clarity the
contents of the response is separated in several groups.

CGC State Group

<time> The time field is the current system time in UTC represented as the
number of seconds since January 1, 1988.

<cgcversion> The <cgcversion> field is the version number of the CGC. It is a string
with printable characters of unspecified contents.

BI-0501 System

<serialnr> This field is a string with printable characters of unspecified contents defin-
ing the serial number of the BI-0501.

<prodname> The <prodname> field is a string with printable characters of unspecified
contents. It defines the product name and will usually be BI-0501 .
Brand Innovators Page 3-10 CGC Software Manual

BI-0501 Protocol Description
<os> This field defines the name and version of the operating system on the
BI-0501. It is again a string of unspecified contents.

<cpuid> The <cpuid> field defines the CPU type controlling the BI-0501. Currently
it can have the following values:
0 Unknown
1 M68EN360
2 M68040

<temp> The <temp> field is the current board level temperature value as meas-
ured by the temperature sensor on the BI-0501. The temperature is meas-
ured in tenth of degrees Celsius. The initial temperature measurement can
take up to 1 second to complete. If the initial measurement has not been
completed the <temp> field will be set to all 1s.

Network Group

<eaddr> The <eaddr> field defines the Ethernet MAC address of BI-0501. It con-
sists of six bytes in the order as is common for the notation of Ethernet
addresses.

<e-ipaddr> The <e-ipaddr> field defines the BI-0501’s IP address on the Ethernet
port. The format is the same as that of all IP addresses in IP packets.

<s-ipaddr> The <s-ipaddr> field defines the BI-0501’s IP address on the RS-232
port. The format is the same as that of all IP addresses in IP packets.

Memory Group

<nrofmemblocks> This field defines how many memory blocks are reported.

<memtype> The <memtype> field defines the type of memory. Currently it can have the
following values:
0 Unknown
1 SRAM
2 DRAM
3 FLASH
4 DPRAM

The value DPRAM is specific to the M68EN360 on the BI-0501. It is a spe-
cial area of on-chip memory of the M68EN360.

<baseaddr> The <baseaddr> field defines the start address of the memory block.

<length> The <length> field defines the length of the memory block in bytes.

CAN Group

<nrofcancntl> This field defines how many CAN controllers are installed.

<controller> The <controller> field defines the type of controller, transceiver and if
the BI-0501 draws power from CAN bus. It can have the following values:

Controller Transceiver Bus power
0 Unknown Unknown Unknown
CGC Software Manual Page 3-11 Brand Innovators

Protocol Description BI-0501
1 82C200 82C251 No
2 82C200 82C252 No
3 SJA1000 82C251 No
4 SJA1000 82C252 No

If the transceiver draws power from the CAN bus, 1000 is added to the
controller field in the previous list.

<fifodepth> The <fifodepth> field defines the number of bytes of FIFO memory
associated with each CAN controller. If a CAN controller does not have a
FIFO, then this number will be 0.

3.10.4 SYS-CONFIGURE: Change system configuration

Request
R J <length> <time> <e-ipaddr> <s-ipaddr> <rootname>

Response
S J <length> <time> <e-ipaddr> <s-ipaddr> <rootname>

Fields
u_long <length>
u_long <time>
u_long <e-ipaddr>
u_long <s-ipaddr>
u_char[8] <rootname>

Description
The SYS-CONFIGURE command can be used to change a few essential parameters on the
BI-0501. The <time> field defines the time to set the BI-0501’s real-time clock to. It is speci-
fied as the number of seconds since January 1, 1988. The field <e-ipaddr> is the IP
address to set for the BI-0501’s Ethernet port. Likewise, the <s-ipaddr> field is the IP
address to set for the BI-0501’s RS-232 port. The <e-ipaddr> and <s-ipaddr> fields
are specified in the same manner as addresses are specified in IP.

The <rootname> field defines the name of the user who should have so called root privi-
leges. A user logging in into the CGC Server under this name is able to change the parame-
ters mentioned above as well as resetting the CGC server and forcibly logging out other
users. The <rootname> field is a character string of at most eight characters. The new
name will be written in nonvolatile memory if not empty.

The change will only take effect after resetting the CGC server, changing the root name in
itself will not reset the CGC server. If the user who issued the SYS-CONFIG request packet
is not the root user, the <time> , <e-ipaddr> and <s-ipaddr> fields will be set in the
response packet, but the <rootname> field will be empty (i.e. filled with eight NULLs).

Only a user who is logged in as ‘root’ can change these parameters. After changing either the
BI-0501’s clock and/or the IP addresses, and sending the response, the CGC application will
reset itself without sending a reset response packet.

If a parameter does not need to be changed, then it should be given the value 0 in the
request packet. The response packet contains the new actual values of the system’s time
and IP address. Note that some address values are illegal such as a local loopback address
Brand Innovators Page 3-12 CGC Software Manual

BI-0501 Protocol Description
(127.*.*.*) and so called broadcast addresses (255 in any byte position). If an attempt is
made to set any such an illegal address, the response will contain the original address and
the address is not changed. No error indication is given.

3.10.5 SYS-SERIAL: Configure the RS-232 port

Request
R K <length> <speed> <databits> <parity> <stopbits>

Response
R K <length> <speed> <databits> <parity> <stopbits>

Fields
u_long <length>
u_long <speed>
u_long <databits>
u_long <parity>
u_long <stopbits>

Description
The SYS-SERIAL command sets the speed, number of databits, parity and number of stopbits to con-
figure the for the serial port on the BI-0501.

 The <speed> field is the baud rate to use on the serial port. It may have the following value: 75, 110,
135, 300, 600, 1200, 2400, 3600, 4800, 7200, 9600, 19200, 38400 or 57600. Any value outside this
range is rejected. The <databits> field must either have the value 7 or 8 and defines the number of
databits in a word. The <parity> must be one of: N for no parity, O for odd parity, E for even parity, M
for mark parity or S for space parity. The <stopbits> field finally must either have the value 1 for 1
stopbit, 2 for 1.5 stopbits or 3 for 2 stopbits.

If any of the fields does not have the correct value the request is ignored and the current settings are
returned in the reply packet. If the values are correct the serial port is reconfigured and the new values
are stored in nonvolatile memory to be used as power-on defaults. Note that if the serial port is in use
no further use will be possible until the system the BI-0501 is connected to has changed its serial port
settings too.

Only the user currently logged in as `root' may change the serial port configuration. For all other users
the current settings are returned.

3.11 CAN Port Packets

Before a CAN port can be used, a user must allocate it. Once allocated, the port can be used to trans-
mit and receive CAN messages. A port can only be allocated by a single user although a user who is
logged in as ‘root’ can forcibly deallocate any allocated CAN port.

The PORT-STATUS command reports which CAN ports are in use by which users. Combining this with
the response from a USER-STATUS command, one can quickly find the host that is using a specific
port. The speed at which a CAN port should be operated is specified with the PORT-SETSPEED com-
mand and is reported by the PORT-GETSPEED command.
CGC Software Manual Page 3-13 Brand Innovators

Protocol Description BI-0501
Ports are numbered starting at 0 for CAN port 1 up to and including 7 for CAN port 8. Port numbers out-
side this ranged are flagged with an error code.

3.11.1 PORT-ADD: Allocate one or more CAN ports to a user

Request
R A <length> <nrofports> { <port> }

Response
S A <length> <nrofports> { <port> <errcode> }

Fields
u_long <length>
u_long <nrofports>
u_long <port>
u_char <errcode>

Description
The PORT-ADD command allocates one or more ports to a user. The request lists the
number of ports to add followed by an enumeration of those ports. The response indicates
the same number of ports and for each port mentioned in the request an error code in the
same order as in the request.

Adding ports may fail if a user is not logged in to the CGC, a port is already allocated to
another user or if the requested port does not exist.

3.11.2 PORT-DELETE: Remove one or more ports from a user

Request
R D <length> <nrofports> { <port> }

Response
S D <length> <nrofports> { <port> <errcode> }

Fields
u_long <length>
u_long <nrofports>
u_long <port>
u_char <errcode>

Description
The PORT-DELETE command removes one or more ports from the list of ports allocated to
user. The <nrofports> field indicates how many ports should be deleted and is followed by
an enumeration of those ports. The response indicates for each deallocated port an error
code in the same order as in the request packet.

For each port that is deallocated, the list of watchdog messages and filters is removed too.
The CAN controller associated with the port is reset to its initial state (i.e. no more messages
are received or transmitted and the actual CAN controller associated with the port is set in
the reset state).
Brand Innovators Page 3-14 CGC Software Manual

BI-0501 Protocol Description
Port deallocation may fail if the user is not logged in to the CGC, a port is not allocated to the
requesting user or if a port does not exits. A user who is logged in as ‘root’ may deallocate
any port regardless if the port was previously allocated to that user.

3.11.3 PORT-STATUS: Report CAN port allocation status

Request
R P <length> <nrofports> { <port> }

Response
S P <length> <nrofports> { <port> <errcode> <speed> <user> }

Fields
u_long <length>
u_long <nrofports>
u_long <port>
u_char <errcode>
u_long <speed>
u_char[8] <user>

Description
The PORT-STATUS command reports the allocation status for a list of ports. The
<nrofports> field indicates from how many ports the status is requested and is followed by
an enumeration of those ports. The reply indicates this same number of ports followed by an
enumeration indicating the status for each port.

The <port> field in the response names the port, the <errcode> field tells if there is an
error associated with the port, and the <user> field names the user to whom the port is allo-
cated. If a port is not allocated the <user> field is empty (i.e. filled with eight NULLs).

The <speed> field contains the bit rate at which the CAN port operates.

3.11.4 PORT-GETSPEED: Get CAN port bit rate

Request
R M <length> <nrofports> { <port> }

Response
S M <length> <nrofports> { <port> <errcode> <speed> }

Fields
u_long <length>
u_long <nrofports>
u_long <port>
u_char <errcode>
u_long <speed>

Description
The PORT-GETSPEED command reports the current bit rate at which a port operates. The
<nrofports> fields indicates of how many ports the speed is requested and it is followed by
an enumeration of those ports. The reply indicates this same number of ports followed by an
enumeration indicating the speed of each port.
CGC Software Manual Page 3-15 Brand Innovators

Protocol Description BI-0501
The <errcode> field details if there is an error associated with the port while the <speed>
field indicates the bit rate the port operates at.

3.11.5 PORT-SETSPEED: Set CAN port bit rate

Request
R B <length> <nrofports> { <port> <speed> }

Response
S B <length> <nrofports> { <port> <errcode> <speed> }

Fields
u_long <length>
u_long <nrofports>
u_long <port>
u_char <errcode>
u_long <speed>

Description
The PORT-SETSPEED command sets the bit rate at which the CAN port operates. The
<nrofports> field indicates how many ports should be changed. It is followed by an enu-
meration of the port number and the speed. The <speed> field is the bit rate the port should
operate at.

The <errcode> field in the response details if there is an error associated with the port and
the <speed> field has the actual bit rate of the port. If the named port does not exist the
value of the <speed> field is meaningless.

3.11.6 PORT-STATISTICS: Get CAN port statistics

Request
R B <length> <port>

Response
S B <length> <port>
<txmsg> <txbyte> <txerr>
<rxmsg> <rxbyte> <rxerr>
<overrun> <erract> <errpasv> <busoff> <rxfull> <txfull>

Fields
u_long <length>
u_long <port>
u_long <txmsg>
u_long <txbyte>
u_long <txerr>
u_long <rxmsg>
u_long <rxbyte>
u_long <rxerr>
u_long <overruns>
u_long <erract>
u_long <errpasv>
u_long <busoff>
Brand Innovators Page 3-16 CGC Software Manual

BI-0501 Protocol Description
u_long <rxfull>
u_long <txfull>

Description
The PORT-STATISTICS command returns the values of several counters the CAN driver on
the BI-0501 maintains. The <port> field names the CAN port for which the statistics should
be returned. If the named port does not exist, all counters are set to 0. The other fields have
the following meaning:

<txmsg> The number of CAN messages transmitted;
<txbyte> The number of data bytes transmitted;
<txerr> The number of transmit errors encountered;
<rxmsg> The number of CAN messages received;
<rxbyte> The number of data bytes received;
<rxerr> The number of receive errors encountered;
<overrun> The number of times an overrun error was signalled by the CAN controller;
<erract> The number of times the CAN controller entered the error active state;
<errpasv> The number of times the CAN controller entered the error passive state;
<busoff> The number of times the CAN controller entered the bus off state;
<rxfull> The number of times a CAN message was left in the FIFO because the

driver’s receive buffer was full;
<txfull> The number of times a CAN message was not accepted for transmission

because the driver’s transmit buffer was full.

Not all counters are reliable: because not all CAN controllers indicate transmission and
reception errors exactly, the <txerr> and <rxerr> fields may be zero. Also, some CAN
controllers do not indicate when they make the transition from the error active to the error
passive state exactly. Therefore the <errpasv> and <erract> fields are only rough indica-
tors of the number of times the error passive and error active modes have been entered by
the CAN controller.

3.12 Watchdog Packets

Sometimes it is desirable to have the CGC to send CAN messages on a CAN port at regular intervals.
This may be periodic or if no packets have been received on a CAN port for some time. Both functions
can be implemented using so called watchdog messages.

Watchdog messages are identified by a message number. This is a number ranging from 0 to 7 that
defines the position of the watchdog message in a list of watchdog messages for a port. Higher num-
bers mean lower priority.

A special type of watchdog message is the so called “hardware watchdog message”. This type of mes-
sage is sent on the port whenever the BI-0501’s hardware watchdog exception handler is invoked. Mes-
sages that are sent on a port because of hardware watchdog invocation are not matched against filter
rules for the port. Note that the number of hardware watchdog messages should be kept to a minimum
as the total system state may not be certain and not enough time might be left to transmit all hardware
watchdog messages.

By using filter rules it is possible to have a watchdog message relayed to the user’s host if one is sent
on a CAN port.

There is a limit of eight watchdog messages for each port.
CGC Software Manual Page 3-17 Brand Innovators

Protocol Description BI-0501
3.12.1 WATCHDOG-ADD: Add w atchdog message to a port

Request
R H <length> <port> <messagenr>
<condition> <timeout> <message>

Response
S H <length> <port> <errcode0> <messagenr>
<condition> <timeout> <errcode1> <message>

Fields
u_long <length>
u_long <port>
u_char <errcode0>
u_long <messagenr>
u_long <condition>
u_long <timeout>
u_char <errcode1>
u_char[20] <message>

Description
The WATCHDOG-ADD command adds a watchdog message to the port named in the
<port> field.

The field <messagenr> is a unique number identifying the watchdog number. The
<condition> field indicates under which condition the message should be sent. If the
<condition> field has the value I then the message is sent whenever the port has been
idle (i.e. no messages transmitted nor received) for the number of microseconds in the
<timeout> field. If the <condition> field has the value T then the message is sent every
<timeout> microseconds.

To send multiple messages in response to a single watchdog trigger, one should set the
<condition> and <timeout> fields of these messages to the same value. Their priority
numbers should be sequential. Then, when the watchdog is triggered, the CGC server sends
the messages in priority order all at once. This feature can be used to implement CAN appli-
cation protocols such as CANopen. The message with the highest priority in the group would
be a so called SYNC message and could be followed by one or more COMMAND messages
that should be transmitted within the synchronisation window.

The value H in the <condition> field is special in that it means that the message is a so
called “hardware watchdog message”. The <messagenr> field is a unique number identify-
ing the priority of the message. Lower numbers mean higher priority. The <timeout> field is
ignored for hardware watchdog messages.

The WATCHDOG-ADD command may fail if either the named port does not exist or is allo-
cated to another user, if the message number already exists or if the <condition> field has
an invalid value.

3.12.2 WATCHDOG-DELETE: Remove w atchdog from a port

Request
R X <length> <port> <messagenr>
Brand Innovators Page 3-18 CGC Software Manual

BI-0501 Protocol Description
Response
S X <length> <port> <errcode> <messagenr>

Fields
u_long <length>
u_long <port>
u_char <errcode>
u_long <messagenr>

Description
The WATCHDOG-DELETE command removes the watchdog message indicated by the
<messagenr> field. If the indicated message does not exist an error is returned in the
<errcode> field.

3.12.3 WATCHDOG-STATUS: Show watchdog status on a port

Request
R W <length> <port>

Response
S W <length> <port> <errcode>
<messagenr> <condition> <timeout> <message>

Fields
u_long <length>
u_long <port>
u_char <errcode>
u_long <messagenr>
u_long <condition>
u_long <timeout>
u_char[20] <message>

Description
The WATCHDOG-STATUS command lists all messages associated with the port named in
the <port> field. The <errcode> field is set to an appropriate error code if the user per-
forming the WATCHDOG-STATUS command has not previously allocated the port.

The fields <messagenr> , <condition> , <timeout> and <message> list the message’s
number, the condition under which it is sent, the timeout value in microseconds and the mes-
sage contents.

A user who is logged in as ‘root’ may always ask the watchdog status of any port.

3.13 Filter Packets

By using filter rules it is possible to limit the amount of traffic from a CAN port to a user’s host. Filter
rules match messages and take action based on the contents of the message. Two basic actions are
possible: either to relay the message to the user’s host or to ignore it. Both actions can be performed for
messages that are transmitted on or received from a port. A filter rule also counts the number of
matches.
CGC Software Manual Page 3-19 Brand Innovators

Protocol Description BI-0501
Filter rules are ordered by means of a filter number which ranges from 0 to 7. Higher numbers mean
lower priority. There is always an unnumbered default filter rule, with the lowest priority, which states
that any message sent on a port always matches and thereby allowing the message to actually to be
sent. The normal action to take, when matching messages in filter rules, is to stop matching as soon as
a message matches a certain rule.

Setting up a filter rule which matches watchdog messages makes it possible to be informed when a
watchdog message is sent.

3.13.1 FILTER-ADD: Add CAN message filter to ports

Request
R I <length> <port> <filternr> <action> <message> <messagemask>

Response
S I <length> <port> <errcode> <filternr> <action>
<message> <messagemask>

Fields
u_long <length>
u_long <port>
u_char <errcode>
u_long <filternr>
u_long <action>
u_char[20] <message>
u_char[20] <messagemask>

Description
The FILTER-ADD command adds a message filter to the port named in the <port> field.
The <filternr> field indicates which filter to add and must be a unique number. The
<action> field indicates the disposition of a message that matches. A value of TS or RS
means that the message should be passed on to the user’s host when it is either transmitted
or received over the port. A value of value of TI or RI means that no special action should be
taken if the message matches the rule.

Note that for matching a message both the <message> and <messagemask> as well the
action field are searched. This means that if a higher priority rule matches a message, but
the message does not match the direction (transmit or receive), the filter will search for
another filter that does match and has the transmit direction of the message under scrutiny.

3.13.2 FILTER-DELETE: Remove CAN message filter from ports

Request
R Q <length> <port> <filternr>

Response
S Q <length> <port> <errcode> <filternr>

Fields
u_long <length>
u_long <port>
Brand Innovators Page 3-20 CGC Software Manual

BI-0501 Protocol Description
u_char <errcode>
u_long <filternr>

Description
The FILTER-DELETE command removes the filter with number <filternr> from the port
named in the <port> field. If the filter does not exist an error code is returned in the
<errcode> field.

3.13.3 FILTER-STATUS: Report CAN message filter for ports

Request
R F <length> <port>

Response
S F <length> <port> <errcode>
<nroffilters> { <filternr> <action> <message> <messagemask>
<counter> }

Fields
u_long <length>
u_long <port>
u_char <errcode>
u_long <nroffilters>
u_long <filternr>
u_long <action>
u_char[20] <message>
u_char[20] <messagemask>
u_long <counter>

Description
The FILTER-STATUS command lists all filters associated with the port named in the <port>
field. The <errcode> field is set to an appropriate error code if the user performing the
FILTER-STATUS command has not previously allocated the port. A user who is logged in as
‘root’ may always ask the filters of any port.

The <nroffilters> field names the number of filters associated with the port. The
<filternr> , <action> , <message> and <messagemask> have the same meaning as
described in the FILTER-ADD command. The <counter> field indicates how many mes-
sages have matched the filter.

Note that the only method for resetting a counter is to delete the associated filter rule and
recreate it.

3.14 CAN Packets

Messages received on a CAN port are sent from the CGC to the user’s host as unsolicited packets on
the data connection. As soon as a port is allocated to a user the CGC may send these packets. This
means that the user’s receiving application must be ready to accept them at any time.
CGC Software Manual Page 3-21 Brand Innovators

Protocol Description BI-0501
CAN messages sent to the CGC from the users host for transmission on a CAN port are sent as unso-
licited packets on the data connection too. They will be transmitted on a CAN port if the port is allocated
by the user and the CAN message matches any of the filter rules defined for the port.

To send messages on a CAN port the CAN-SEND packet is used, likewise the CGC sends unsolicited
CAN-SEND packets to the user when a filter rule matches a CAN message transmitted on a CAN port.
CAN messages received on a port are sent as unsolicited CAN-RECEIVE packets.

Because of network and queuing delays errors on a CAN port may occur some time after messages
have been offered for transmission. The CAN-ERROR packet reports errors with two timestamps: one
is a timestamp which the user had attached when sending the CAN-SEND packet and one that indi-
cates the actual time the error occurred.

3.14.1 CAN-SEND: Send CAN messages to a port

Response
U C <length> <port> <nrofmessages> { <message> }

Fields
u_long <length>
u_long <port>
u_long <nrofmessages>
u_char[20] <message>

Description
If the receiver of the CAN-SEND packet is the user’s host then the CAN-SEND packet con-
tains a collection of CAN messages sent to the indicated CAN port. If the receiver is the CGC
then the CAN-SEND packet lists the number of CAN messages to be transmitted on the indi-
cated CAN port. Up to eight CAN messages can be transmitted with a single CAN-SEND
packet.

3.14.2 CAN-RECEIVE: Received CAN messages

Response
U Y <length> <port> <nrofmessages> { <message> }

Fields
u_long <length>
u_long <port>
u_long <nrofmessages>
u_char[20] <message>

Description
The CAN-RECEIVE packet is sent by the CGC whenever messages have been received on
the port named in the <port> field. The <nrofmessages> field tells how many messages
have been received and is followed by the list of received messages.

3.14.3 CAN-ERROR: CAN message errors

Response
U E <length> <port>
<nrofmessages> { <timestamp0> <timestamp1> <errcode> }
Brand Innovators Page 3-22 CGC Software Manual

BI-0501 Protocol Description
Fields
u_long <length>
u_long <port>
u_long <nrofmessages>
u_long <timestamp0>
u_long <timestamp1>
u_char <errcode>

Description
The CAN-ERROR packet is sent by the CGC whenever an error occurs transmitting or
receiving messages on the port named in the <port> field. The <errcode> field details the
error that occurred. The <timestamp0> is the timestamp sent with the original CAN-SEND
message, the <timestamp1> field is the time at which the error occurred. If the error occurs
while no messages are being transmitted the <timestamp0> field will have the value zero.
CGC Software Manual Page 3-23 Brand Innovators

Protocol Description BI-0501
Brand Innovators Page 3-24 CGC Software Manual

Chapter 4 CGC Host Library

4.1 Introduction

The CGC host library (or CGC library) for the CGC protocol handles most of the details of communica-
tions management between a host application and the CGC server on the BI-0501. It is a C language
based library which defines a number of data structures and functions which collectively manage the
CGC protocol.

In the following paragraphs an overview of the library is given along with a description of the various
functions available for application programmers. It is assumed that the reader is familiar with the CGC
protocol described in chapter 3.

4.2 Prerequisites

Each source code file making calls to the CGC library must include the file <cgclib.h> . This file
defines the necessary data structures and constants used by the library functions. It is probably also
necessary to include those system files that define data types such as struct sockaddr_in . For
example, on a typical UNIX system one should have the following include order:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include <cgclib.h>

All functions and data types declared in the CGC library are prefixed with the string cgc_ , all constants
and macros are prefixed with the string CGC_.

The CGC library functions do very little error checking on the parameters passed to them. No particular
checking is done for NULL pointers or values that are out of bounds for a certain parameter. The func-
tion descriptions in the following paragraphs however do specify the expected parameters and their
range exactly. It is left to the application programmer’s discretion to ensure that the correct parameters
values are passed.

Two types of errors may occur when using the CGC library: those detected by the operating system the
application is used on and those detected by the CGC server on the BI-0501. In order not to confuse
the two, all CGC library functions return either 0 if they completed successfully or -1 if an operating sys-
tem error was detected. Most operating systems provide for some means (e.g. the global errno varia-
ble on UNIX systems) of detecting the exact nature of the last error encountered. Errors detected by the
CGC server are usually stored in a separate variable on return from a CGC library function. Therefore
the user should check both the return value from any CGC library function as well as the error code
returned from the CGC server.

The CGC library proper consists of two layers: an operating system independent upper layer and a
more or less operating system dependent lower layer. The upper layer manages communication with
CGC Software Manual Page 4-1 Brand Innovators

CGC Host Library BI-0501
the CGC server through a function call interface. The lower layer handles the actual packet transmis-
sion and reception and is operating system dependent. The upper layer fills packet buffers based on
parameters passed to CGC library functions and offers these packet buffers to the lower layer for trans-
mission. The lower layer in turn transmits these packet buffers to the CGC server and awaits response
packets from it. The response packets are then decoded and passed back to the upper layer for further
processing. The main reason for this two-level layering is to allow applications with different synchroni-
zation requirements to be implemented without a specific model of synchronization imposed on them
by the CGC library. Windowed style applications usually have a radically different event loop handling
than simple server style applications.

Memory allocated and deallocated by the CGC library uses the system functions malloc() and
free() . The CGC library never calls malloc() with a 0 size, nor does it ever call free() with a
NULL pointer. Some of the functions in the CGC library may return pointers to structures allocated with
malloc() . These pointers should be passed to free() when the memory they occupy is no longer in
use. If such a structure contains pointers (for example to character strings) then the memory referenced
by those pointers should be released first. If a pointer has the value NULL no call to free() should be
done of course.

Several functions in the CGC library reference a structure called can_msg . This structure holds a CAN
message to be transmitted or received. It has the following declaration:

struct can_msg {
unsigned long cm_tm;
unsigned long cm_id;
unsigned short cm_rsv;
unsigned char cm_rtr;
unsigned char cm_dlc;
unsigned char cm_data[8];

};

where the fields have the following meaning: the cm_tm is a timestamp field measured in microsec-
onds, the cm_id field is the CAN message ID, the cm_rsv field is reserved and should be 0, the
cm_rtr field is the CAN RTR bit and is non-zero if the RTR bit is set, the cm_dlc field is the CAN data
length code, the cm_data field, finally, holds the data bytes contained in the CAN message.

When sending CAN messages the cm_tm field is ignored by the CGC server as is the cm_rsv field.
The other fields are expected to have correct values as demanded by the CAN protocol. This means in
particular that the cm_id and cm_dlc fields should have legal values, the CGC server does not check
for this. The cm_data field is always eight bytes long, even if the cm_dlc field indicates that there are
less that eight bytes in the message.

All IP addresses and IP port numbers returned by the CGC library and passed from the user’s applica-
tion to the CGC library functions are in network byte order.

4.3 Connection Management

The connection management functions initialise the CGC library and manage TCP connections to the
CGC server on the BI-0501.
Brand Innovators Page 4-2 CGC Software Manual

BI-0501 CGC Host Library
4.3.1 cgc_init()

SYNOPSIS
#include <cgclib.h>
int cgc_init(void);

PARAMETERS
None.

DESCRIPTION
The cgc_init() function initializes the CGC library and should therefore always be the first call
before any other CGC library function can be called.

RETURN VALUE
0 CGC library is initialised;
-1 CGC library could not be initialised.

SEE ALSO
cgc_deinit() .

4.3.2 cgc_deinit()

SYNOPSIS
#include <cgclib.h>
int cgc_deinit(void);

PARAMETERS
None.

DESCRIPTION
The cgc_deinit() function should be called to deallocate all resources in the CGC library. It
should be called when the application is done using any of the other functions of the CGC library.
Note that cgc_deinit() does not deallocate resources held by the application on the CGC
server. This is the responsibility of the application.

After cgc_deinit() returns only cgc_init() may be called.

RETURN VALUE
0 CGC library is initialised;
-1 CGC library could not be initialised.

SEE ALSO
cgc_init() .
CGC Software Manual Page 4-3 Brand Innovators

CGC Host Library BI-0501
4.3.3 cgc_conn_cmdch()

SYNOPSIS
#include <cgclib.h>
int cgc_conn_cmdch(unsigned long addr, unsigned short port,

int *cmdfd);

PARAMETERS
unsigned long addr TCP host address (in network byte order) where the CGC

server is located;
unsigned short port TCP port number (in network byte order) at which the CGC

server listens for connection requests;
int *cmdfd Pointer to a location where the file descriptor referencing the

connection is stored.

DESCRIPTION
The cgc_conn_cmdch() function initiates a TCP connection to the CGC server specified by the
parameters addr and port . The file descriptor referencing the connection is returned in the
location pointed to by the cmdfd pointer. If the connection cannot be established
cgc_conn_cmdfd() returns the value -1 and value in the location pointed to by cmdfd is unde-
fined.

The cgc_conn_cmdfd() function is typically the first function in the CGC library to be called
after calling cgc_init() . It establishes the command connection between the CGC server and
the user’s host application. The function to call after cgc_conn_cmdfd() is the
cgc_u_login() function which returns the port number to use for the data connection (i.e. for
the exchange of CAN messages). This port number should then be passed to the
cgc_conn_datach() function to create the data connection. Finally one should call the func-
tion cgc_conn_pwrch() to be able to receive power down messages from the BI-0501.

RETURN VALUE
0 Connection established;
-1 Connection establishment failed.

SEE ALSO
cgc_conn_datach() , cgc_conn_pwrch() , cgc_disconnect() .
Brand Innovators Page 4-4 CGC Software Manual

BI-0501 CGC Host Library
4.3.4 cgc_conn_datach()

SYNOPSIS
#include <cgclib.h>
int cgc_conn_datach(unsigned long addr, unsigned short port,

int *datafd);

PARAMETERS
unsigned long addr TCP host address (in network byte order) where the CGC

server is located;
unsigned short port TCP port number (in network byte order) at which the CGC

server listens for connection requests;
int *datafd Pointer to a location where the file descriptor referencing the

connection is stored.

DESCRIPTION
The cgc_conn_datach() function initiates a TCP connection to the CGC server specified by
the parameters addr and port . The file descriptor referencing the connection is returned in the
location pointed to by the datafd pointer. If the connection cannot be established
cgc_conn_datafd() returns the value -1 and value in the location pointed to by datafd is
undefined.

RETURN VALUE
0 Connection established;
-1 Connection establishment failed.

SEE ALSO
cgc_conn_cmdch() , cgc_conn_pwrch() , cgc_disconnect() .

4.3.5 cgc_conn_pwrch()

SYNOPSIS
#include <cgclib.h>
int cgc_conn_pwrch(unsigned long addr, unsigned short port,

int *pwrfd);

PARAMETERS
unsigned long addr The UDP host address (in network byte order) on which to

receive power failure notification from the CGC server;
unsigned short port UDP port number (in network byte order) on which to receive

power failure notification;
int *pwrfd Pointer to a location where the file descriptor referencing the

connection is stored.

DESCRIPTION
The cgc_conn_pwrch() creates a UDP “connection” on which to receive power failure mes-
sages from the CGC server. The addr parameter is the address of the host on which to receive
power failure notification, the port parameter is the UDP port on which to receive those mes-
sages. The pwrfd parameter finally is a pointer to a location where the file descriptor referencing
the connection is stored.
CGC Software Manual Page 4-5 Brand Innovators

CGC Host Library BI-0501
Note that power down notification uses the UDP protocol. This means that there is no permanent
UDP connection between the CGC server and the user’s host application for these types of mes-
sages. Therefore the addr parameter is not used by the cgc_conn_pwrch() function, only the
udpport parameter is used.

RETURN VALUE
0 Connection established;
-1 Connection establishment failed.

SEE ALSO
SYS-POWERDOWN packet, cgc_conn_cmdch() , cgc_s_pwrnotify() .

4.3.6 cgc_disconnect()

SYNOPSIS
#include <cgclib.h>
int cgc_disconnect(int fd);

PARAMETERS
int fd The file descriptor from which to disconnect a connection to

the CGC server;

DESCRIPTION
The cgc_disconnect() function closes the file descriptor referencing a connection with the
CGC server. The file descriptor fd can be any of the command, data or power failure file descrip-
tors.

RETURN VALUE
0 Disconnected from CGC server;
-1 Disconnect failed.

SEE ALSO
cgc_conn_cmdch() , cgc_conn_datach() , cgc_conn_pwrch() .

4.3.7 cgc_doio()

SYNOPSIS
#include <cgclib.h>
int cgc_doio(int cmdfd, int datafd, int pwrfd);

unsigned char cgc_pkt_in[CGC_PKT_MAX], cgc_pkt_out[CGC_PKT_MAX];
int cgc_pkt_ilen, cgc_pkt_olen;
Brand Innovators Page 4-6 CGC Software Manual

BI-0501 CGC Host Library
PARAMETERS
int cmdfd The file descriptor to use for the normal CGC server I/O;
int datafd The file descriptor to use to receive (and send) CAN mes-

sages;
int pwrfd A file descriptor on which to listen for power down messages

from the CGC server.

DESCRIPTION
The cgc_doio() function is called by the other CGC library functions when they want to read or
write packets. The cgc_doio() function takes packets to send from the global variable
cgc_pkt_out and the variable cgc_pkt_olen . The packet is written to the file descriptor refer-
enced by the parameter cmdfd . Next, cgc_doio() will try to read a packet back from the CGC
server on the same file descriptor and store the result in the global variable cgc_pkt_in and the
length in cgc_pkt_ilen . While reading from the cmdfd file descriptor cgc_doio() will also
listen to messages coming from the pwrfd file descriptor. If a message is read from that file
descriptor, the global variable cgc_powerdown will be set to non-zero and the function defined
by cgc_s_pwrnotify will be called if not NULL.

If any of the three parameters has the value -1, the cgc_doio() will not attempt to send or
receive on the associated connection.

RETURN VALUE
0 No error
-1 A read or write error occurred.

SEE ALSO

4.4 User Management

The user management functions allow one to connect to the CGC server on the BI-0501 and subse-
quently use the BI-0501’s CAN ports. Before any other function can be used it is necessary to login on
the CGC server, using the cgc_u_login() function. After using the CGC server the user should call
the cgc_u_logout() function which deallocates all resources allocated to the user. The
cgc_u_status() function can be used to inquire about the currently logged in users.

4.4.1 cgc_u_login()

SYNOPSIS
#include <cgclib.h>
int cgc_u_login(int *err, char *name, unsigned short *port);
CGC Software Manual Page 4-7 Brand Innovators

CGC Host Library BI-0501
PARAMETERS
int *err Pointer to a location where the result of the login is stored;
char *name Pointer to the name of the user wishes to login to the CGC

server;
unsigned short *port Pointer to a location where the port number for the data con-

nection is stored.

DESCRIPTION
The cgc_u_login() function attempts to login the named user. The name parameter should
point to a NULL terminated character string of at most eight characters. The err parameter
should point to a location where the error code as returned from the CGC server is stored. If the
*err parameter as the value CGC_ERR_NONE then the login has succeeded.

The port parameter is a pointer to a location where the port number (in network byte order) for
the data connection is stored. That value is typically passed to cgc_conn_datach() .

RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications error occurred.

SEE ALSO
USER-LOGIN packet, cgc_u_logout() , cgc_u_status() .

4.4.2 cgc_u_logout()

SYNOPSIS
#include <cgclib.h>
int cgc_u_logout(int *err, char *name);

PARAMETERS
int *err Pointer to a location where the result of the login is stored;
char *name Pointer to the name of the user who wishes to logout from

the CGC server.

DESCRIPTION
The cgc_u_logout() function deallocates all resources assigned to the named user. The
name parameter should point to a NULL terminated character string of at most eight characters.
The err parameter should point to a location where the error code as returned from the CGC
server is stored. If the *err parameter has the value CGC_ERR_NONE the logout has succeeded.
The user wishing to perform the logout function must be the same user that performed the login.

RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications error occurred.

SEE ALSO
USER-LOGOUT packet, cgc_u_login() , cgc_u_status()
Brand Innovators Page 4-8 CGC Software Manual

BI-0501 CGC Host Library
4.4.3 cgc_u_status()

SYNOPSIS
#include <cgclib.h>
int cgc_u_status(int *nrofusers, struct cgc_user **user)

PARAMETERS
int *nrofusers Pointer to a location where the number of entries pointed to

by the struct cgc_user pointer user is stored;
struct cgc_user **user Pointer to an array of cgc_user information structures.

DESCRIPTION
This function requests the list of users currently logged in with the CGC server and their origin.
The parameter nrofusers should point to a location where the number of users currently
logged in is stored. The user parameter is a pointer to a location where a pointer is stored which
points to an array of type cgc_user . This array has *nrofusers entries and is allocated by the
CGC library. The cgc_user structure has the following declaration:

struct cgc_user {
int err;
char *name
unsigned long ipaddr;
unsigned shortport;
int proto;

};

The err field is an individual error code for each entry, the name field points to a NULL character
string of at most 8 characters. The ipaddr and port fields define the IP address and port
number on the host from which the user is logged in. Both are in network byte order. The proto
field finally defines the protocol the user is using.

If no users are logged in the value returned in nrofusers will be 0. The memory allocated for
the cgc_user array should be deallocated using free() .

RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications error occurred.

SEE ALSO
USER-STATUS packet, cgc_u_login() , cgc_u_logout()

4.5 CGC Server Configuration

Functions in this paragraph allow querying the configuration of the CGC server and the BI-0501. Some
parameters may also be changed with the cgc_s_config() function. When changing parameters on
the CGC server or when resetting the CGC server (with cgc_s_reset()) all TCP/IP connections will
be broken by the CGC server and have to be re-established by the host applications.
CGC Software Manual Page 4-9 Brand Innovators

CGC Host Library BI-0501
4.5.1 cgc_s_nop()

SYNOPSIS
#include <cgclib.h>
int cgc_s_nop(unsigned long *ts0, unsigned long *ts1);

PARAMETERS
unsigned long *ts0 Pointer to a location where the local hosts’ time stamp is

stored;
unsigned long *ts1 Pointer to a location where the return timestamp from the

CGC server will be stored.

DESCRIPTION
The cgc_s_nop() function can be used to test the availability of the CGC server. The ts0
parameter should point to a location where a timestamp is be stored. This timestamp is a simple
unsigned long value and is not further interpreted by the CGC server but sent back unaltered.
Commonly one would use the value from the hosts system’s time() system call. The ts1
parameter is a pointer to a location where a timestamp value as returned from the CGC server.

RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications with the CGC server failed.

SEE ALSO
SYS-NOP packet, cgc_s_reset() .

4.5.2 cgc_s_reset()

SYNOPSIS
#include <cgclib.h>
int cgc_s_reset(int *err);

PARAMETERS
int *err Pointer to a location where the (possible) return value from

the CGC server will be stored.

DESCRIPTION
The cgc_s_reset() function resets the CGC server to its initial state. This has the effect of log-
ging out all logged in users and deallocating all resources such as CAN ports and message fil-
ters allocated to those users. Only the user who is currently logged in as ‘root’ is allowed to reset
the CGC server. As a consequence of resetting the CGC server all TCP/IP connections to the
CGC server are no longer operational and should be closed.

RETURN VALUE
0 Communications with the CGC server finished OK;
-1 A communications failure with the CGC occurred.

SEE ALSO
SYS-RESET packet, cgc_s_nop() .
Brand Innovators Page 4-10 CGC Software Manual

BI-0501 CGC Host Library
4.5.3 cgc_s_info()

SYNOPSIS
#include <cgclib.h>
int cgc_s_info(struct cgc_info **info);

PARAMETERS
struct cgc_info **info Pointer to a location where the pointer to the cgc_info

structure will be stored.

DESCRIPTION
The cgc_s_info() function requests the configuration information of the CGC server and the
BI-0501 to be returned. The parameter info should point to a location where a pointer to an allo-
cated struct cgc_info will be stored. The cgc_info structure has the following declaration:

struct cgc_info {
unsigned long ts;
char *version;
char *serialnr;
char *prodname;
char *os;
unsigned long cpuid;
unsigned long temp;
unsigned char eaddr[6];
unsigned long eipaddr;
unsigned long sipaddr;
unsigned long nrofmemblocks;
struct cgc_memconfig *memconfig;
unsigned long nrofcanports;
struct cgc_canconfig *canconfig;

};

Each of the fields has the same layout as described in the SYS-INFO packet description in the
previous chapter. The char* fields are pointer to NULL terminated character strings and should
be deallocated before deallocting the cgc_info structure. The cgc_memconfig and
cgc_canconfig structures have the following declaration:

struct cgc_memconfig {
unsigned long memtype;
unsigned long baseaddr;
unsigned long length;

};

and

struct cgc_canconfig {
int controller;
unsigned long fifodepth;

};

As with the character pointers in the cgc_info structure, the memconfig and canconfig
pointers should be deallocated before deallocating the cgc_info structure.
CGC Software Manual Page 4-11 Brand Innovators

CGC Host Library BI-0501
RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications error occurred.

SEE ALSO
SYS-INFO packet, cgc_s_config()

4.5.4 cgc_s_config()

SYNOPSIS
#include <cgclib.h>
int cgc_s_config(unsigned long *tm,

unsigned long *eipaddr, unsigned long *sipaddr, char **root);

PARAMETERS
unsigned long *tm Pointer to the location where the new CGC server time is

found and where the new actual value is stored;
unsigned long *eipaddr Pointer to the location where the new CGC server IP

address for the BI-0501’s Ethernet interface is stored;
unsigned long *sipaddr Pointer to the location where the new CGC server IP

address for the BI-0501’s serial port is stored;
char **root Pointer to the location where a pointer to the new name for

the ‘root’ user is stored.

DESCRIPTION
The cgc_s_config() function changes three essential parameters on the BI-0501: the current
time and the Ethernet and serial port IP addresses. The tm parameter should point to the loca-
tion where the new system time can be found to be set. Likewise, the eipaddr and sipaddr
parameters should point to locations where the new IP addresses for the BI-0501’s Ethernet and
serial port are to be found. Both the Ethernet IP address and serial port IP address should be in
network byte order. The parameter root is a pointer to a location where a pointer to the new
‘root’ name is stored. If the name should not be changed then either this pointer may be NULL or
should point to a NULL pointer. If a value should not be changed, it should be given the value 0.

After return of cgc_s_config() the locations pointed to by tm , eipaddr and sipaddr are
updated with the actual values as set by the CGC server. Only the user who is currently logged in
as ‘root’ may change these parameters. After changing any of the tm , eipaddr or sipaddr val-
ues the CGC server will reset itself. If the name of the ‘root’ user was changed then the CGC
server will not reset itself.

RETURN VALUE
0 Communications with the CGC finished OK;
-1 Communications failure.

SEE ALSO
SYS-CONFIG packet, cgc_s_nop() .
Brand Innovators Page 4-12 CGC Software Manual

BI-0501 CGC Host Library
4.5.5 cgc_s_serial()

SYNOPSIS
#include <cgclib.h>
int cgc_s_serial(int *speed, int *databits,

int *parity, int *stopbits);

PARAMETERS
int *speed A pointer to a location where the baud rate to set is stored

and where the actual baud rate as received from the CGC
server is stored;

int *databits A pointer to a location where the number of databits is
stored;

int *parity A pointer to a location where the type of parity is stored;
int *stopbits A pointer to a location where the number of stopbits is

stored.

DESCRIPTION
The cgc_s_serial() parameters allows one to change the serial port parameters on the
BI-0501. The speed parameter is a pointer to a location where the baud rate at which to config-
ure the port is located. After returning from cgc_s_serial() this location will contain the actual
baud rate. Likewise are the databits parameter, parity parameter and stopbits parame-
ters pointers to locations where respectively the number of databits, parity and stopbits to config-
ure are found.

Only the user who is currently logged in as ‘root’ can actually change the serial port parameters.
From all other users the change is ignored and the current settings are returned.

RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications with the CGC server failed.

SEE ALSO
SYS-SERIAL packet.

4.5.6 cgc_s_pwrnotify()

SYNOPSIS
#include <cgclib.h>
int cgc_s_pwrnotify(int *err, unsigned short udpport,

int nrofports, struct cgc_pwrnotify *pwrnotify, void (*notify)(int));

int cgc_powerdown;
CGC Software Manual Page 4-13 Brand Innovators

CGC Host Library BI-0501
PARAMETERS
int *err Pointer to a location where the error code returned from the

CGC server is stored;
unsigned short udpport An UDP port number in the range 1024 to 65535 on which to

receive power failure notification;
int nrofports The number of CAN ports for which to set CAN messages

that are sent in case of a power failure;
struct cgc_pwrnotify *pwrnotify

Pointer to a location where the CAN messages can be
found;

void (*notify(int)) Pointer to a function to call when a power failure has been
detected.

DESCRIPTION
The cgc_s_pwrnotify() function installs a power down notification function which is called
when a SYS-POWERDOWN message is received from the CGC server. The notification function
is called with a single integer argument which will have the value 1 in case of a power down. If
cgc_s_pwrnotify() is called with a NULL argument for the notify parameter, the currently
installed function is cancelled. In this case no protocol interaction with the CGC server occurs.

The other parameters to the cgc_s_pwrnotify() function have the following meaning: the
err parameter is a pointer to a location where the error code returned from the CGC server is
stored, udpport is the UDP port to which the CGC server should send a power failure message,
the nrofports parameter is the number of entries in the array pointed to by the pwrnotify
parameter (i.e. the number of ports) for which to set the power failure notification. The pwrnotify
parameter is a pointer to an array where the CAN port numbers and the CAN messages to be
transmitted in case of a power failure are stored. Each array entry has the following definition:

struct cgc_pwrnotify {
int err;
int port;
struct can_msg msg;

};

The err field is used by cgc_s_pwrnotify() to store the return error code from the CGC
server. The port field is the port number for which to set the CAN message and the msg field is
the CAN message to send in case of a power failure on the BI-0501.

The global variable cgc_powerdown is set to the value 1 when a SYS-POWERDOWN message
has been received. This is done regardless if a notification function has been installed or not.

RETURN VALUE
0 Power down function has been installed or removed.
-1 Power down function could not be installed or removed.

SEE ALSO
SYS-POWERDOWN packet.
Brand Innovators Page 4-14 CGC Software Manual

BI-0501 CGC Host Library
4.6 CAN Port Management

The port management functions allow the caller to allocate CAN ports for message transmission and
reception as well as configuring CAN ports. Most port management use a structure called cgc_port
which has the following definition:

struct cgc_port {
int err;
int port;
int speed;
char *user;

};

The fields in this structure have the following meaning. The err field is used to store the error code as
received from the CGC server, the port field names the port for which this structure is applicable, the
speed field defines the CAN bus speed. The user field finally points to a NULL terminated character
string with the name of the user to which the port is allocated. Not all fields are used by all port manage-
ment functions which expect a struct cgc_port as a parameter, these fields are then set to 0. The
function descriptions below mention which fields are used.

4.6.1 cgc_p_add()

SYNOPSIS
#include <cgclib.h>
int cgc_p_add(int nrofports, struct cgc_port *port);

PARAMETERS
int *nrofports The number of ports in the array pointed to by the port

parameter;
struct cgc_port *port A pointer to an array of ports to add.

DESCRIPTION
The cgc_p_add() function allocates one or more ports to a user. The parameter nrofports is
the number of entries in the cgc_port structure that the port parameter points to. The user
must of course be logged in into the CGC server. On return the entries in the array that the port
parameter points to will be updated with the error code returned from the CGC server for each
port.

The cgc_p_add() function uses the port and err fields from the cgc_port structure.

RETURN VALUE
0 Communication with the CGC server finished OK;
-1 Communications with the CGC server failed.

SEE ALSO
PORT-ADD packet, cgc_p_delete() .
CGC Software Manual Page 4-15 Brand Innovators

CGC Host Library BI-0501
4.6.2 cgc_p_delete()

SYNOPSIS
#include <cgclib.h>
int cgc_p_delete(int nrofports, struct cgc_port *port)

PARAMETERS
int nrofports The number of ports in the array pointed to by the port

parameter;
struct cgc_port *port A pointer to an array of ports to delete.

DESCRIPTION
The cgc_p_delete() function removes the ports named in the array of ports pointed to by the
port cgc_port structure. The nrofports parameter is the number of entries in this array. On
return the array pointed to by the port parameter will have the error code field err filled in for
each port for which deletion was requested.

The cgc_p_delete() function uses the port and err field from the cgc_port structure.

RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications with the CGC server failed.

SEE ALSO
PORT-DELETE packet, cgc_p_add() .

4.6.3 cgc_p_status()

SYNOPSIS
#include <cgclib.h>
int cgc_p_status(int nrofports, struct cgc_port *port)

PARAMETERS
int nrofports The number of entries in the array of ports pointed to by the

port parameter;
struct cgc_users *port A pointer to an array of ports for which the status is

requested.

DESCRIPTION
The cgc_p_status() function queries the CGC server about the status of the ports named in
the array pointed to by the port pointer. The nrofports parameter is the number of entries in
the cgc_port array. For each port the following fields in the cgc_port structure are filled in on
return: the err field holds the error code returned for the port, the port field names the port for
which the cgc_port entry is applicable, the speed field defines the CAN bus speed at which the
port operates. The user field, finally, points to a NULL terminated character string naming the
user to which the port is allocated. The storage for character string is allocated with malloc()
and should be deallocated with free() before deallocating a cgc_port entry.
Brand Innovators Page 4-16 CGC Software Manual

BI-0501 CGC Host Library
RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications with the CGC server failed.

SEE ALSO
PORT-STATUS packet, cgc_p_status() .

4.6.4 cgc_p_getspeed()

SYNOPSIS
#include <cgclib.h>
int cgc_p_getspeed(int nrofports, struct cgc_port *port);

PARAMETERS
int nrofports The number of entries in the array pointed to by the port

parameter;
struct cgc_port *port A pointer to an array of cgc_port structures from which the

bit rate is requested.

DESCRIPTION
The cgc_p_getspeed() function requests the bit rates at which the ports mentioned in the
array pointed to by the port pointer operate. The number of entries in this array is given in the
nrofports parameter. On return the following fields will be filled: the err field has the error
code for the field, the speed field is the bit rate at which the CAN bus for this port operates.

RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications with the CGC server failed.

SEE ALSO
PORT-GETSPEED packet, cgc_p_setspeed() .

4.6.5 cgc_p_setspeed()

SYNOPSIS
#include <cgclib.h>
int cgc_p_setspeed(int nrofports, struct cgc_port *port);

PARAMETERS
int nrofports The number of entries in the array of cgc_port structures

the port parameter points to;
struct cgc_port *port A pointer to an array of cgc_port structures.

DESCRIPTION
The cgc_p_setspeed() function changes the bit rate of one or more ports. The nrofports
parameter is the number of entries in the array of cgc_port structures pointed to by the port
parameter. For each port the bit rate is set depending on the speed field CAN port bit rate to set.
On return the following fields will be filled in: the err field will contain the error code associated
with this port, the speed field will contain the actual value of the CAN port bit rate.
CGC Software Manual Page 4-17 Brand Innovators

CGC Host Library BI-0501
RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications with the CGC server failed.

SEE ALSO
PORT-SETSPEED packet, cgc_p_getspeed() .

4.6.6 cgc_p_statistics()

SYNOPSIS
#include <cgclib.h>
int cgc_p_statistics(int port, struct cgc_portstats *stats);

PARAMETERS
int port The number of the CAN port for which the statistics are

requested;
struct cgc_portstats *stats Pointer to a location where the CAN port’s statistics are

stored.

DESCRIPTION
The cgc_p_statistics() function requests the current transmission and reception counters
from the CAN port named in the port parameter. The parameter stats should point to a loca-
tion where the counters are stored. The cgc_portstats structure has the following definition:

struct cgc_portstats {
unsigned long txmsg;
unsigned long txbyte;
unsigned long txfull;
unsigned long txerr;
unsigned long rxmsg;
unsigned long rxbyte;
unsigned long rxfull;
unsigned long rxerr;
unsigned long overrun;
unsigned long erract;
unsigned long errpasv;
unsigned long busoff;
};

The fields have the same meaning as described in the definition of the PORT-STATISTICS
packet.

RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications with the CGC server failed.

SEE ALSO
PORT-STATISTICS packet.
Brand Innovators Page 4-18 CGC Software Manual

BI-0501 CGC Host Library
4.7 Watchdog Management

The watchdog functions allow setting messages which are sent on a CAN port at regular intervals or
when the BI-0501 is interrupted from its regular work by a hardware watchdog reset. Sending one or
more CAN messages at regular intervals is useful to implement time based polling of CAN devices with-
out the need for message transmission from the users’ host to the CGC server first.

4.7.1 cgc_w_add()

SYNOPSIS
#include <cgclib.h>
int cgc_w_add(int port, int *err, int msgnr, int cond,

unsigned long tmo, struct can_msg *msg);

PARAMETERS
int port The port number to set the watchdog message on;
int *err A pointer to a location where the error code will be stored

when cgc_w_add() returns;
int msgnr The watchdog message number;
int cond The condition for which the watchdog message is valid;
unsigned long tmo The interval if the watchdog message should be sent at reg-

ular intervals or 0 if not used;
struct can_msg *msg A pointer to a location where the CAN message is to be

found.

DESCRIPTION
The cgc_w_add() function adds a CAN message to the watchdog named by the msgnr param-
eter. The port parameter names the port for which to add the watchdog. The cond parameter
identifies the condition under which the CAN messages are to be sent. If the watchdog is a peri-
odic watchdog, the tmo parameter is the number of microseconds in the watchdog period, other-
wise it is ignored. The msg field holds the CAN message. The err parameter finally points to a
location where the returned error code from the CGC server is stored.

RETURN VALUE
0 Communications with the CGC server succeeded;
-1 Communications with the CGC server failed.

SEE ALSO
WATCHDOG-ADD packet, cgc_w_delete() .

4.7.2 cgc_w_delete()

SYNOPSIS
#include <cgclib.h>
int cgc_w_delete(int port, int msgnr, int *err);
CGC Software Manual Page 4-19 Brand Innovators

CGC Host Library BI-0501
PARAMETERS
int port The port number from which to delete the watchdog;
int msgnr The watchdog to delete;
int *err A pointer to a location where the error code from the CGC

server should be stored.

DESCRIPTION
The cgc_w_delete() function deletes the watchdog named in the parameter msgnr from the
port mentioned in the parameter port . The location pointed to by the err parameter will be set
to the error code returned from the CGC server.

RETURN VALUE
0 Communications with the CGC server succeeded;
-1 Communications with the CGC server failed.

SEE ALSO
WATCHDOG-DELETE packet, cgc_w_delete() .

4.7.3 cgc_w_status()

SYNOPSIS
#include <cgclib.h>
int cgc_w_status(int port, int *err,

int *nrofmsgs, struct cgc_wdstmsg **msg);

PARAMETERS
int port The port number for which the watchdog status is requested;
int *err A pointer to the location where the error code returned from

the CGC server will be stored;
int *nrofmsgs Pointer to a location where the number of watchdog mes-

sages returned in the cgc_wdstmsg array is stored.
struct cgc_wdstmsg **msg Pointer to a location where the pointer to an array with

nrofmsgs entries, each describing a watchdog message is
stored.

DESCRIPTION
The cgc_w_status() function requests the status of all watchdogs set on the port specified in
the port parameter. The location pointed to by the err parameter will be set to the error code
returned from the CGC server. The nrofmsgs parameter is a pointer to a location where the
number of watchdogs in the array pointed to by the *msg parameter will be stored. The msg
parameter is a pointer to a location where the pointer to an array of cgc_wdstmsg structures will
be stored. The cgc_wdstmsg structure has the following layout:

struct cgc_wdstmsg {
int msgnr;
int cond;
unsigned long tmo;
struct can_msg msg;
};

where the fields have the following meaning: the msgnr is the watchdog message number, the
cond is the condition under which the watchdog will operate, the tmo field is the timeout interval
in microseconds or 0 and msg is the CAN message to send if the watchdog is activated.
Brand Innovators Page 4-20 CGC Software Manual

BI-0501 CGC Host Library
RETURN VALUE
0 Communications with the CGC server succeeded;
-1 Communications with the CGC server failed.

SEE ALSO
WATCHDOG-STATUS packet, cgc_w_add() .

4.8 Filter Management

By using filters it is possible to block CAN messages received by the CGC server from being sent to the
user’s host application. This can help to minimize traffic to only those messages that the user is inter-
ested in. It is also possible to have a CAN message sent to the user’s host because a message was
transmitted on a port. This feature of the filters is useful when using watchdog messages. By installing
a filter rule which matches the CAN message being sent by the watchdog, the user’s application is noti-
fied automatically when this happens.

CAN message filtering consists of two parts: a message mask determines which parts (i.e. bits) of the
message should be considered for matching and a filter message determines the bits that should be
matched.

4.8.1 cgc_f_add()

SYNOPSIS
#include <cgclib.h>
int cgc_f_add(int port, int *err, int fltnr, int action,

struct can_msg *msg, struct can_msg *msgmask);

PARAMETERS
int port The port number to set the filter message on;
int *err A pointer to a location where the error code will be stored

when cgc_f_add() is finished;
int fltnr The filter rule number;
int action The action to take when a CAN message meets the filter

condition;
struct can_msg *msg A pointer to a location where the CAN message to match is

stored;
struct can_msg *msgmask A pointer to a location where the mask message to be

applied before matching the CAN message is stored.

DESCRIPTION
The cgc_f_add() function adds a CAN message filter rule to the port named in the port
parameter. The filter rule to add is named in the fltnr parameter. The err parameter points to
the location where the error code returned from the CGC server is stored. The action parame-
ter defines the action to take when a CAN message matches the filter rule. The parameters
can_msg and can_msgmsk point to the CAN message with which to match and a mask mes-
sage defining the significant bits in the message.
CGC Software Manual Page 4-21 Brand Innovators

CGC Host Library BI-0501
RETURN VALUE
0 Communications with the CGC server succeeded;
-1 Communications with the CGC server failed.

SEE ALSO
FILTER-ADD packet, cgc_f_delete().

4.8.2 cgc_f_delete()

SYNOPSIS
#include <cgclib.h>
int cgc_f_delete(int port, int *err, int fltnr);

PARAMETERS
int port The port number to delete the filter message from;
int *err A pointer to a location where the error code will be stored

when cgc_f_delete() returns;
int fltnr The filter rule number to delete;

DESCRIPTION
The cgc_f_delete() function removes a CAN message filter rule from the port named in the
port parameter. The filer rule to remove is named in the fltnr parameter. The err parameter
points to the location where the error code returned from the CGC server is stored.

RETURN VALUE
0 Communications with the CGC server succeeded;
-1 Communications with the CGC server failed.

SEE ALSO
FILTER-DELETE packet, cgc_f_add() .

4.8.3 cgc_f_status()

SYNOPSIS
#include <cgclib.h>
int cgc_f_status(int port, int *err, int *nrofflt,

struct cgc_flt **flt);

PARAMETERS
int port The port number for which the filter status is requested;
int *err A pointer to a location where the error code will be stored

when cgc_f_status() returns;
int *nrofflt Pointer to a location where the number of filters in the array

pointed to by *flt is stored;
struct cgc_flt **flt A pointer to a location where the pointer to the array with fil-

ters defined for this port is stored.

DESCRIPTION
The cgc_f_status() function requests the status of all filters defined for the port named in the
port parameter. The err parameter is a pointer to a location where the error code from the
Brand Innovators Page 4-22 CGC Software Manual

BI-0501 CGC Host Library
CGC server is to be stored. The nrofflt parameter is a pointer to a location where the number
of filters in the array pointed to by the *flt parameter is stored. The flt parameter is a pointer
to a location where the array of filters defined for the port are stored. The struct cgc_flt has
the following declaration:

struct cgc_flt {
int fltnr;
int action;
int counter;
struct can_msg msg;
struct can_msgmsk msgmsk;

};

where the fields have the following meaning: fltnr is the number of the filter rule, action is the action
to take when a CAN message matches the this filter rule, counter is the number of matches, and msg
and msgmsk are the CAN message to match message to and the mask to apply before matching.

RETURN VALUE
0 Communications with the CGC server succeeded;
-1 Communications with the CGC server failed.

SEE ALSO
FILTER-STATUS packet, cgc_f_add() .

4.9 CAN Message Reception and Transmission

CAN message transmission and reception in the user’s application is done using so called unsolicited
request and response messages. This means that at any time the user can send messages and mes-
sages received by the CGC server from a CAN bus on the BI-0501 can be sent to the user’s application
at any time. There is however a single CGC host library function that deals with these messages:
cgc_c_canio() . This function is passed a list of CAN ports and messages and for each message an
indication if it should be transmitted or received. On return the lists are modified to contain the CAN
messages recently received from the CGC server.

4.9.1 cgc_c_canio()

SYNOPSIS
#include <cgclib.h>
int cgc_c_canio(int datafd,

int nrofmsgs,
int *port, int *txrx, struct can_msg *msg);
CGC Software Manual Page 4-23 Brand Innovators

CGC Host Library BI-0501
PARAMETERS
int datafd The file descriptor on which to send or receive CAN mes-

sages;
int nrofmsgs The maximum number of messages in the arrays pointed to

by the port , txrx and msg pointers;
int *port A pointer to a list of ports of at most nrofmsgs long for

which either messages should be transmitted or received;
int *txrx Pointer to a list indicating if messages should be transmitted

or received;
struct can_msg *msg A pointer to a list of CAN messages to be transmitted or

received.

DESCRIPTION
The cgc_c_canio() function receives and transmits CAN messages. The CGC server may
send CAN messages at any time to the user’s application. The CAN messages sent by the CGC
server to the user’s application can be either so called “send” or “receive” messages. Send mes-
sages are those that were sent by the CGC server on a particular CAN port, receive messages
are those that were received from a particular CAN port.

On entry to cgc_c_canio() the parameters have the following meaning: datafd is the file
descriptor referencing the data connection with the CGC server, nrofmsgs is the number of
entries in the arrays pointed to by the port , txrx and msg pointers.

Before attempting to receive CAN messages from the CGC server, cgc_c_canio() first exam-
ines the txrx array and for each location that has the CGC_CAN_TX flag set, the port number
and CAN message are collected and sent to the CGC server for transmission on the indicated
CAN port. This process continues until a txrx array entry is found which has the flag
CGC_CAN_LAST set too.

After transmitting all CAN messages, cgc_c_canio() attempts to read CAN messages sent by
the CGC server to the user’s host application. It reads CAN messages from the data connection
for up to nrofmsgs CAN messages. Each CAN message is then put in the next free location in
the msg array and the associated port entry is updated to reflect the CAN port for which the
message is applicable. Each applicable entry in the txrx array has either the flag CGC_CAN_TX
or CGC_CAN_RX set depending if the CAN message is a CAN-SEND message or a CAN-
RECEIVE message. If no more CAN messages remain in the input queue, then the last entry in
the txrx array will have the flag CGC_CAN_LAST set too.

The cgc_c_canio() function is normally expected to operate in a non-blocking fashion: if no
messages are received, cgc_c_canio() returns immediately.

RETURN VALUE
0 Communications with the CGC server finished OK;
-1 Communications with the CGC server failed.

SEE ALSO
CAN-SEND packet, CAN-RECEIVE packet.
Brand Innovators Page 4-24 CGC Software Manual

	CGC Software Manual BI-0501
	CAN Gateway Controller
	Version 2.1 January 1998
	Documentation History
	97/07/10
	0.1
	Preliminary Specification
	97/09/19
	1.0
	First Release
	97/12/15
	2.0
	Protocol Changes
	98/01/05
	2.1
	Minor Clarifications
	Copyright
	Disclaimer
	Chapter 1 Introduction 1-1
	1.1 Purpose 1-1
	1.2 Audience 1-1
	1.3 Conventions 1-1
	1.4 Overview 1-1

	Chapter 2 CAN Gateway Controller 2-1
	2.1 Introduction 2-1
	2.2 Overview 2-1
	2.3 Setup 2-2
	2.4 Usage 2-3
	2.5 Security 2-4

	Chapter 3 Protocol Description 3-1
	3.1 Introduction 3-1
	3.2 Connection Management 3-1
	3.3 Packet Format 3-2
	3.4 Field Types 3-2
	3.5 Request Types 3-4
	3.6 Privileges 3-4
	3.7 Error Codes 3-5
	3.8 Power-down Handling 3-6
	3.9 User Management 3-7
	3.10 Control Packets 3-9
	3.11 CAN Port Packets 3-13
	3.12 Watchdog Packets 3-17
	3.13 Filter Packets 3-19
	3.14 CAN Packets 3-21

	Chapter 4 CGC Host Library 4-1
	4.1 Introduction 4-1
	4.2 Prerequisites 4-1
	4.3 Connection Management 4-2
	4.4 User Management 4-7
	4.5 CGC Server Configuration 4-9
	4.6 CAN Port Management 4-15
	4.7 Watchdog Management 4-19
	4.8 Filter Management 4-21
	4.9 CAN Message Reception and Transmission 4-23

	Table of Contents
	List of Figures
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Conventions
	1.4 Overview

	Chapter 2 CAN Gateway Controller
	2.1 Introduction
	2.2 Overview
	Figure 2-1 BI-0501/CGC Network Configuration

	2.3 Setup
	Table 2-1 CAN bus bit rate and bus length

	2.4 Usage
	2.5 Security

	Chapter 3 Protocol Description
	3.1 Introduction
	3.2 Connection Management
	3.3 Packet Format
	3.4 Field Types
	3.5 Request Types
	3.6 Privileges
	3.7 Error Codes
	3.7.1 ERROR: Malformed packet detected

	3.8 Power-down Handling
	3.9 User Management
	3.9.1 USER-LOGIN: Login a user to the CGC
	3.9.2 USER-LOGOUT: Logout a user to the CGC
	3.9.3 USER-STATUS: Request a list of logged in users

	3.10 Control Packets
	3.10.1 SYS-NOP: No operation (a.k.a. ping)
	3.10.2 SYS-RESET: Reset the CGC to initial state
	3.10.3 SYS-INFO: Request information about the CGC
	3.10.4 SYS-CONFIGURE: Change system configuration
	3.10.5 SYS-SERIAL: Configure the RS-232 port

	3.11 CAN Port Packets
	3.11.1 PORT-ADD: Allocate one or more CAN ports to a user
	3.11.2 PORT-DELETE: Remove one or more ports from a user
	3.11.3 PORT-STATUS: Report CAN port allocation status
	3.11.4 PORT-GETSPEED: Get CAN port bit rate
	3.11.5 PORT-SETSPEED: Set CAN port bit rate
	3.11.6 PORT-STATISTICS: Get CAN port statistics

	3.12 Watchdog Packets
	3.12.1 WATCHDOG-ADD: Add watchdog message to a port
	3.12.2 WATCHDOG-DELETE: Remove watchdog from a port
	3.12.3 WATCHDOG-STATUS: Show watchdog status on a port

	3.13 Filter Packets
	3.13.1 FILTER-ADD: Add CAN message filter to ports
	3.13.2 FILTER-DELETE: Remove CAN message filter from ports
	3.13.3 FILTER-STATUS: Report CAN message filter for ports

	3.14 CAN Packets
	3.14.1 CAN-SEND: Send CAN messages to a port
	3.14.2 CAN-RECEIVE: Received CAN messages
	3.14.3 CAN-ERROR: CAN message errors

	Chapter 4 CGC Host Library
	4.1 Introduction
	4.2 Prerequisites
	4.3 Connection Management
	4.3.1 cgc_init()
	SYNOPSIS
	PARAMETERS
	None.

	DESCRIPTION
	RETURN VALUE
	0 CGC library is initialised;
	-1 CGC library could not be initialised.

	SEE ALSO

	4.3.2 cgc_deinit()
	SYNOPSIS
	PARAMETERS
	None.

	DESCRIPTION
	RETURN VALUE
	0 CGC library is initialised;
	-1 CGC library could not be initialised.

	SEE ALSO

	4.3.3 cgc_conn_cmdch()
	SYNOPSIS
	PARAMETERS
	unsigned long addr TCP host address (in network byte order) where the CGC server is located;
	unsigned short port TCP port number (in network byte order) at which the CGC server listens for c...
	int *cmdfd Pointer to a location where the file descriptor referencing the connection is stored.

	DESCRIPTION
	RETURN VALUE
	0 Connection established;
	-1 Connection establishment failed.

	SEE ALSO

	4.3.4 cgc_conn_datach()
	SYNOPSIS
	PARAMETERS
	unsigned long addr TCP host address (in network byte order) where the CGC server is located;
	unsigned short port TCP port number (in network byte order) at which the CGC server listens for c...
	int *datafd Pointer to a location where the file descriptor referencing the connection is stored.

	DESCRIPTION
	RETURN VALUE
	0 Connection established;
	-1 Connection establishment failed.

	SEE ALSO

	4.3.5 cgc_conn_pwrch()
	SYNOPSIS
	PARAMETERS
	unsigned long addr The UDP host address (in network byte order) on which to receive power failure...
	unsigned short port UDP port number (in network byte order) on which to receive power failure not...
	int *pwrfd Pointer to a location where the file descriptor referencing the connection is stored.

	DESCRIPTION
	RETURN VALUE
	0 Connection established;
	-1 Connection establishment failed.

	SEE ALSO

	4.3.6 cgc_disconnect()
	SYNOPSIS
	PARAMETERS
	int fd The file descriptor from which to disconnect a connection to the CGC server;

	DESCRIPTION
	RETURN VALUE
	0 Disconnected from CGC server;
	-1 Disconnect failed.

	SEE ALSO

	4.3.7 cgc_doio()
	SYNOPSIS
	PARAMETERS
	int cmdfd The file descriptor to use for the normal CGC server I/O;
	int datafd The file descriptor to use to receive (and send) CAN messages;
	int pwrfd A file descriptor on which to listen for power down messages from the CGC server.

	DESCRIPTION
	RETURN VALUE
	0 No error
	-1 A read or write error occurred.

	SEE ALSO

	4.4 User Management
	4.4.1 cgc_u_login()
	SYNOPSIS
	PARAMETERS
	int *err Pointer to a location where the result of the login is stored;
	char *name Pointer to the name of the user wishes to login to the CGC server;
	unsigned short *port Pointer to a location where the port number for the data connection is stored.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications error occurred.

	SEE ALSO

	4.4.2 cgc_u_logout()
	SYNOPSIS
	PARAMETERS
	int *err Pointer to a location where the result of the login is stored;
	char *name Pointer to the name of the user who wishes to logout from the CGC server.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications error occurred.

	SEE ALSO

	4.4.3 cgc_u_status()
	SYNOPSIS
	PARAMETERS
	int *nrofusers Pointer to a location where the number of entries pointed to by the struct cgc_use...
	struct cgc_user **user Pointer to an array of cgc_user information structures.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications error occurred.

	SEE ALSO

	4.5 CGC Server Configuration
	4.5.1 cgc_s_nop()
	SYNOPSIS
	PARAMETERS
	unsigned long *ts0 Pointer to a location where the local hosts’ time stamp is stored;
	unsigned long *ts1 Pointer to a location where the return timestamp from the CGC server will be s...

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.5.2 cgc_s_reset()
	SYNOPSIS
	PARAMETERS
	int *err Pointer to a location where the (possible) return value from the CGC server will be stored.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 A communications failure with the CGC occurred.

	SEE ALSO

	4.5.3 cgc_s_info()
	SYNOPSIS
	PARAMETERS
	struct cgc_info **info Pointer to a location where the pointer to the cgc_info structure will be ...

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications error occurred.

	SEE ALSO

	4.5.4 cgc_s_config()
	SYNOPSIS
	PARAMETERS
	unsigned long *tm Pointer to the location where the new CGC server time is found and where the ne...
	unsigned long *eipaddr Pointer to the location where the new CGC server IP address for the BI-050...
	unsigned long *sipaddr Pointer to the location where the new CGC server IP address for the BI-050...
	char **root Pointer to the location where a pointer to the new name for the ‘root’ user is stored.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC finished OK;
	-1 Communications failure.

	SEE ALSO

	4.5.5 cgc_s_serial()
	SYNOPSIS
	PARAMETERS
	int *speed A pointer to a location where the baud rate to set is stored and where the actual baud...
	int *databits A pointer to a location where the number of databits is stored;
	int *parity A pointer to a location where the type of parity is stored;
	int *stopbits A pointer to a location where the number of stopbits is stored.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.5.6 cgc_s_pwrnotify()
	SYNOPSIS
	PARAMETERS
	int *err Pointer to a location where the error code returned from the CGC server is stored;
	unsigned short udpport An UDP port number in the range 1024 to 65535 on which to receive power fa...
	int nrofports The number of CAN ports for which to set CAN messages that are sent in case of a po...
	struct cgc_pwrnotify *pwrnotify Pointer to a location where the CAN messages can be found;
	void (*notify(int)) Pointer to a function to call when a power failure has been detected.

	DESCRIPTION
	RETURN VALUE
	0 Power down function has been installed or removed.
	-1 Power down function could not be installed or removed.

	SEE ALSO

	4.6 CAN Port Management
	4.6.1 cgc_p_add()
	SYNOPSIS
	PARAMETERS
	int *nrofports The number of ports in the array pointed to by the port parameter;
	struct cgc_port *port A pointer to an array of ports to add.

	DESCRIPTION
	RETURN VALUE
	0 Communication with the CGC server finished OK;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.6.2 cgc_p_delete()
	SYNOPSIS
	PARAMETERS
	int nrofports The number of ports in the array pointed to by the port parameter;
	struct cgc_port *port A pointer to an array of ports to delete.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.6.3 cgc_p_status()
	SYNOPSIS
	PARAMETERS
	int nrofports The number of entries in the array of ports pointed to by the port parameter;
	struct cgc_users *port A pointer to an array of ports for which the status is requested.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.6.4 cgc_p_getspeed()
	SYNOPSIS
	PARAMETERS
	int nrofports The number of entries in the array pointed to by the port parameter;
	struct cgc_port *port A pointer to an array of cgc_port structures from which the bit rate is req...

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.6.5 cgc_p_setspeed()
	SYNOPSIS
	PARAMETERS
	int nrofports The number of entries in the array of cgc_port structures the port parameter points...
	struct cgc_port *port A pointer to an array of cgc_port structures.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.6.6 cgc_p_statistics()
	SYNOPSIS
	PARAMETERS
	int port The number of the CAN port for which the statistics are requested;
	struct cgc_portstats *stats Pointer to a location where the CAN port’s statistics are stored.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.7 Watchdog Management
	4.7.1 cgc_w_add()
	SYNOPSIS
	PARAMETERS
	int port The port number to set the watchdog message on;
	int *err A pointer to a location where the error code will be stored when cgc_w_add() returns;
	int msgnr The watchdog message number;
	int cond The condition for which the watchdog message is valid;
	unsigned long tmo The interval if the watchdog message should be sent at regular intervals or 0 i...
	struct can_msg *msg A pointer to a location where the CAN message is to be found.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server succeeded;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.7.2 cgc_w_delete()
	SYNOPSIS
	PARAMETERS
	int port The port number from which to delete the watchdog;
	int msgnr The watchdog to delete;
	int *err A pointer to a location where the error code from the CGC server should be stored.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server succeeded;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.7.3 cgc_w_status()
	SYNOPSIS
	PARAMETERS
	int port The port number for which the watchdog status is requested;
	int *err A pointer to the location where the error code returned from the CGC server will be stored;
	int *nrofmsgs Pointer to a location where the number of watchdog messages returned in the cgc_wds...
	struct cgc_wdstmsg **msg Pointer to a location where the pointer to an array with nrofmsgs entrie...

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server succeeded;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.8 Filter Management
	4.8.1 cgc_f_add()
	SYNOPSIS
	PARAMETERS
	int port The port number to set the filter message on;
	int *err A pointer to a location where the error code will be stored when cgc_f_add() is finished;
	int fltnr The filter rule number;
	int action The action to take when a CAN message meets the filter condition;
	struct can_msg *msg A pointer to a location where the CAN message to match is stored;
	struct can_msg *msgmask A pointer to a location where the mask message to be applied before match...

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server succeeded;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.8.2 cgc_f_delete()
	SYNOPSIS
	PARAMETERS
	int port The port number to delete the filter message from;
	int *err A pointer to a location where the error code will be stored when cgc_f_delete() returns;
	int fltnr The filter rule number to delete;

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server succeeded;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.8.3 cgc_f_status()
	SYNOPSIS
	PARAMETERS
	int port The port number for which the filter status is requested;
	int *err A pointer to a location where the error code will be stored when cgc_f_status() returns;
	int *nrofflt Pointer to a location where the number of filters in the array pointed to by *flt is...
	struct cgc_flt **flt A pointer to a location where the pointer to the array with filters defined ...

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server succeeded;
	-1 Communications with the CGC server failed.

	SEE ALSO

	4.9 CAN Message Reception and Transmission
	4.9.1 cgc_c_canio()
	SYNOPSIS
	PARAMETERS
	int datafd The file descriptor on which to send or receive CAN messages;
	int nrofmsgs The maximum number of messages in the arrays pointed to by the port, txrx and msg po...
	int *port A pointer to a list of ports of at most nrofmsgs long for which either messages should ...
	int *txrx Pointer to a list indicating if messages should be transmitted or received;
	struct can_msg *msg A pointer to a list of CAN messages to be transmitted or received.

	DESCRIPTION
	RETURN VALUE
	0 Communications with the CGC server finished OK;
	-1 Communications with the CGC server failed.

	SEE ALSO

